
Model Predictive Control Toolbox™

Reference

R2014a

Alberto Bemporad
Manfred Morari
N. Lawrence Ricker

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Model Predictive Control Toolbox™ Reference

© COPYRIGHT 2005–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
October 2004 First printing New for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.2.4 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)
September 2010 Online only Revised for Version 3.2.1 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.1.1 (Release 2012b)
March 2013 Online only Revised for Version 4.1.2 (Release 2013a)
September 2013 Online only Revised for Version 4.1.3 (Release R2013b)
March 2014 Online only Revised for Version 4.2 (Release R2014a)

Contents

Functions – Alphabetical List

1

Block Reference

2

Object Reference

3
MPC Controller Object . 3-2
ManipulatedVariables . 3-3
OutputVariables . 3-4
DisturbanceVariables . 3-6
Weights . 3-7
Model . 3-9
Ts . 3-12
Optimizer . 3-12
PredictionHorizon . 3-12
ControlHorizon . 3-12
History . 3-13
Notes . 3-13
UserData . 3-13
MPCData . 3-13
Version . 3-13
Construction and Initialization . 3-13

MPC Simulation Options Object . 3-14

MPC State Object . 3-16

v

vi Contents

1

Functions – Alphabetical
List

cloffset

Purpose Compute MPC closed-loop DC gain from output disturbances to
measured outputs assuming constraints are inactive at steady state

Syntax DCgain=cloffset(MPCobj)

Description The cloff function computes the DC gain from output disturbances to
measured outputs, assuming constraints are not active, based on the
feedback connection between Model.Plant and the linearized MPC
controller, as depicted below.

Computing the Effect of Output Disturbances

By superposition of effects, the gain is computed by zeroing references,
measured disturbances, and unmeasured input disturbances.

DCgain=cloffset(MPCobj) returns an nym-by-nym DC gain matrix
DCgain, where nym is the number of measured plant outputs. MPCobj
is the MPC object specifying the controller for which the closed-loop
gain is calculated. DCgain(i,j) represents the gain from an additive
(constant) disturbance on output j to measured output i. If row i
contains all zeros, there will be no steady-state offset on output i.

1-2

cloffset

See Also mpc | ss

Related
Examples

• “Compute Steady-State Gain”

1-3

compare

Purpose Compare two MPC objects

Syntax yesno=compare(MPC1,MPC2)

Description The compare function compares the contents of two MPC objects MPC1,
MPC2. If the design specifications (models, weights, horizons, etc.) are
identical, then yesno is equal to 1.

Note compare may return yesno=1 even if the two objects are not
identical. For instance, MPC1 may have been initialized while MPC2 may
have not, so that they may have different sizes in memory. In any case,
if yesno=1 the behavior of the two controllers will be identical.

See Also mpc | pack

1-4

d2d

Purpose Change MPC controller’s sampling time

Syntax MPCobj=d2d(MPCobj,ts)

Description The d2d function changes the sampling time of the MPC controller
MPCobj to ts. All models are sampled or resampled as soon as the QP
matrices must be computed, e.g., when sim or mpcmove are used.

See Also mpc | set

1-5

get

Purpose MPC property values

Syntax Value = get(MPCobj,'PropertyName')
Struct = get(MPCobj)
get(MPCobj)

Description Value = get(MPCobj,'PropertyName') returns the current value
of the property PropertyName of the MPC controller MPCobj. The
string 'PropertyName' can be the full property name (for example,
'UserData') or any unambiguous case-insensitive abbreviation (for
example, 'user'). You can specify any generic MPC property.

Struct = get(MPCobj) converts the MPC controller MPCobj into a
standard MATLAB® structure with the property names as field names
and the property values as field values.

get(MPCobj) without a left-side argument displays all properties of
MPCobj and their values.

Tips An alternative to the syntax

Value = get(MPCobj,'PropertyName')

is the structure-like referencing

Value = MPCobj.PropertyName

For example,

MPCobj.Ts
MPCobj.p

return the values of the sampling time and prediction horizon of the
MPC controller MPCobj.

See Also mpc | set

1-6

getconstraint

Purpose Model Predictive Control custom constraint definitions

Syntax [E,F,G,V,S] = getconstraint(mpcobj)

Description [E,F,G,V,S] = getconstraint(mpcobj) returns the custom
constraints previously defined for the mpc object, mpcobj. The
constraints are in the general form

Eu k j Fy k j Sv k j G V() () () (1-1)

where:

• p — MPC prediction horizon.

• k — current time index.

• u — column vector of manipulated variables.

• y — column vector of all plant output variables.

• v — column vector of measured disturbance variables.

• ε — scalar slack variable used for constraint softening.

• E, F, G, V and S — constant matrices.

getconstraint calculates the last constraint at time k+p assuming that
u(k+p|k) = u(k+p-1|k). This is because u(k+p|k) is not optimized
by the model predictive controller.

Input
Arguments

mpcobj

MPC controller, specified as an mpc object.

Output
Arguments

E

Constant used in custom constraints as defined in Equation 1-1.

[] if mpcobj contains no custom constraints.

E is an nc-by-nu matrix, where nc is the number of custom constraints
and nu is the number of manipulated variables.

1-7

getconstraint

F

Constant used in custom constraints as defined in Equation 1-1.

[] if mpcobj contains no custom constraints.

F is an nc-by-ny matrix, where nc is the number of custom constraints
and ny is the number of output variables (measured and unmeasured).

G

Constant used in custom constraints as defined in Equation 1-1.

[] if mpcobj contains no custom constraints.

G is an nc-by-1 vector, where nc is the number of custom constraints.

V

Constant used in custom constraints as defined in Equation 1-1.

[] if mpcobj contains no custom constraints.

V is an nc-by-1 vector, where nc is the number of custom constraints.

If

• V(i) = 0 — the ith constraint is hard

• V(i) > 0 — the ith constraint is soft

Where i = 1,...,nc.

In general, as V(i) decreases, the controller decreases the allowed
constraint violation, i.e. the constraint becomes harder.

S

Constant used in custom constraints as defined in Equation 1-1.

[] if mpcobj contains no custom constraints or there are no measured
disturbances in the custom constraints.

S is an nc-by-nmd matrix, where nc is the number of custom constraints
and nmd is the number of measured disturbance inputs.

1-8

getconstraint

Examples Obtain the constraints associated with an MPC controller.

Create an mpc object with 2 manipulated variables and 2 measured
outputs.

p = rss(3,2,3);
p.D = 0;
p = setmpcsignals(p,'mv',[1 2],'md',3);
c = mpc(p,0.1);

Assume that you have two soft constraints.

u

y

u

v
1 2

2

5

10

Set the constraints for the mpc object.

E = [1 1; 0 0];
F = [0 0;0 1];
G = [5;10];
V = [1;1];
S = [0;1];
setconstraint(c,E,F,G,V,S);

Obtain the constraints for c.

[E F G V S] = getconstraint(c)
E =

1 1
0 0

F =

0 0
0 1

1-9

getconstraint

G =

5
10

V =

1
1

S =

0
1

See Also setconstraint

1-10

getestim

Purpose Model and gain for observer design

Syntax M = getestim(MPCobj)
[M,A,Cm] = getestim(MPCobj)
[M,A,Cm,Bu,Bv,Dvm] = getestim(MPCobj)
[M,model,Index] = getestim(MPCobj,'sys')

Description M = getestim(MPCobj) extracts the estimator gain M used by
the MPC controller MPCobj for observer design. The observer
is based on the models specified in MPCobj.Model.Plant, in
MPCobj.Model.Disturbance, by the output disturbance model (default
is integrated white noise, see “Output Disturbance Model”), and by
MPCobj.Model.Noise.

The state estimator is based on the linear model (see “State Estimation”)

x(k + 1) = Ax(k) + Buu(k) + Bvv(k)

ym(k) = Cmx(k) + Dvmv(k)

where v(k) are the measured disturbances, u(k) are the manipulated
plant inputs, ym(k) are the measured plant outputs, and x(k) is the
overall state vector collecting states of plant, unmeasured disturbance,
and measurement noise models.

The estimator used in the Model Predictive Control Toolbox™ software
is described in “State Estimation”. The estimator’s equations are

Predicted Output Computation:

ˆ ˆ ()y k k C x k k D v km m vm−() = −() +1 1

Measurement Update:

ˆ ˆ () ˆx k k x k k M y k y k km m() = −() + − −()()1 1

Time Update:

ˆ ˆ () ()x k k Ax k k B u k B v ku v+() = () + +1

1-11

getestim

By combining these three equations, the overall state observer is

ˆ ˆ () () ()x k k A LC x k k Ly k B u k B LD v km m u v vm+() = −() −() + + + −()1 1

where L=AM.

[M,A,Cm] = getestim(MPCobj) also returns matrices A,Cm used for
observer design. This includes the plant model, disturbance model,
noise model, and offsets. The extended state is

x=[plant states; disturbance models states; noise model states]

[M,A,Cm,Bu,Bv,Dvm] = getestim(MPCobj) retrieves the whole linear
system used for observer design.

[M,model,Index] = getestim(MPCobj,'sys') retrieves the overall
model used for observer design (specified in the Model field of the MPC
object) as an LTI state-space object, and optionally a structure Index
summarizing I/O signal types.

The extended input vector of model model is

u=[manipulated vars;measured disturbances; 1; noise exciting
disturbance model;noise exciting noise model]

Model model has an extra measured disturbance input v=1 used for
handling possible nonequilibrium nominal values (see “Offsets”).

Input, output, and state names and input/output groups are defined
for model model.

The structure Index has the fields detailed in the following table.

Field Name Description

ManipulatedVariables Indices of manipulated variables within
input vector

MeasuredDisturbances Indices of measured disturbances within
input vector (not including offset=1)

1-12

getestim

Field Name Description

Offset Index of offset=1

WhiteNoise Indices of white noise signals within input
vector

MeasuredOutputs Indices of measured outputs within output
vector

UnmeasuredOutputs Indices of unmeasured outputs within
output vector

To improve the solvability of the Kalman filter design, the software adds
white noise to the manipulated variables and measured disturbances,
as described in “State Observer”. The model returned by getestim does
not include this additional white noise.

See Also setestim | mpc | mpcstate

1-13

getindist

Purpose Unmeasured input disturbance model

Syntax model=getindist(MPCobj)

Description model=getindist(MPCobj) retrieves the linear discrete-time transfer
function used to model unmeasured input disturbances in the MPC
setup described by the MPC object MPCobj. Model model is an LTI object
with as many outputs as the number of unmeasured input disturbances,
and as many inputs as the number of white noise signals driving the
input disturbance model.

For details about the overall model used in the MPC algorithm for state
estimation purposes, see “State Estimation”.

See Also mpc | setindist | setestim | getestim | getoutdist

1-14

getmpcdata

Purpose Private MPC data structure

Note getmpcdata will be removed in a future version. Use get,
getconstraint, getestim, getindist andgetoutdist instead.

Syntax mpcdata=getmpcdata(MPCobj)

Description mpcdata=getmpcdata(MPCobj) returns the private field MPCData of the
MPC object MPCobj. Here, all internal QP matrices, models, estimator
gains are stored at initalization of the object. You can manually change
the private data structure using the setmpcdata command, although
you may only need this for very advanced use of Model Predictive
Control Toolbox software.

Note Changes to the data structure may easily lead to unpredictable
results.

See Also setmpcdata | set | get

1-15

getname

Purpose I/O signal names in MPC prediction model

Syntax name=getname(MPCobj,'input',I)
name=getname(MPCobj,'output',I)

Description name=getname(MPCobj,'input',I) returns the name of the
I-th input signal in variable name. This is equivalent to
name=MPCobj.Model.Plant. InputName{I}. The name property
is equal to the contents of the corresponding Name field of
MPCobj.DisturbanceVariables or MPCobj.ManipulatedVariables.

name=getname(MPCobj,'output',I) returns the name of the
I-th output signal in variable name. This is equivalent to
name=MPCobj.Model.Plant.OutputName{I}. The name property
is equal to the contents of the corresponding Name field of
MPCobj.OutputVariables.

See Also setname | mpc | set

1-16

getoutdist

Purpose Unmeasured output disturbance model

Syntax outdist=getoutdist(MPCobj)
[outdist,channels]=getoutdist(MPCobj)

Description outdist=getoutdist(MPCobj) retrieves the linear discrete-time
transfer function used to model output disturbances in the MPC setup
described by the MPC object MPCobj. Model outdist is an LTI object
with as many outputs as the number of measured + unmeasured
outputs, and as many inputs as the number of white noise signals
driving the output disturbance model.

For details about the overall model used in the MPC algorithm for state
estimation purposes, see “State Estimation”.

[outdist,channels]=getoutdist(MPCobj) also returns the
output channels where integrated white noise was added as
an output disturbance model. This is only meaninful when
the default output disturbance model is used, namely when
MPCobj.OutputVariables(i).Integrators is empty for all channels i.
The array channels is empty for output disturbance models.

See Also mpc | setoutdist | setestim | getestim | getindist

1-17

gpc2mpc

Purpose Generate MPC controller using generalized predictive controller (GPC)
settings

Syntax mpc = gpc2mpc(plant)
gpcOptions = gpc2mpc
mpc = gpc2mpc(plant,gpcOptions)

Description mpc = gpc2mpc(plant) generates a single-input single-output MPC
controller with default GPC settings and sampling time of the plant,
plant. The GPC is a nonminimal state-space representation described
in [1]. plant is a discrete-time LTI model with sampling time greater
than 0.

gpcOptions = gpc2mpc creates a structure gpcOptions containing
default values of GPC settings.

mpc = gpc2mpc(plant,gpcOptions) generates an MPC controller
using the GPC settings in gpcOptions.

Tips • For plants with multiple inputs, only one input is the manipulated
variable, and the remaining inputs are measured disturbances in
feedforward compensation. The plant output is the measured output
of the MPC controller.

• Use the MPC controller with Model Predictive Control Toolbox
software for simulation and analysis of the closed-loop performance.

Input
Arguments

plant

Discrete-time LTI model with sampling time greater than 0.

gpcOptions

GPC settings, specified as a structure with the following fields.

1-18

gpc2mpc

N1 Starting interval in prediction horizon,
specified as a positive integer.
Default: 1.

N2 Last interval in prediction horizon, specified
as a positive integer greater than N1.
Default: 10.

NU Control horizon, specified as a positive
integer less than the prediction horizon.
Default: 1.

Lam Penalty weight on changes in manipulated
variable, specified as a positive integer
greater than or equal to 0.
Default: 0.

T Numerator of the GPC disturbance model,
specified as a row vector of polynomial
coefficients whose roots lie within the unit
circle.
Default: [1].

MVindex Index of the manipulated variable for
multi-input plants, specified as a positive
integer.
Default: 1.

Examples Design an MPC controller using GPC settings:

% Specify the plant described in Example 1.8 of [1].
G = tf(9.8*[1 -0.5 6.3],conv([1 0.6565],[1 -0.2366 0.1493]));

% Discretize the plant with sample time of 0.6 seconds.
Ts = 0.6;
Gd = c2d(G, Ts);

% Create a GPC settings structure.

1-19

gpc2mpc

GPCoptions = gpc2mpc;

% Specify the GPC settings described in example 4.11 of [1].
% Hu
GPCoptions.NU = 2;
% Hp
GPCoptions.N2 = 5;
% R
GPCoptions.Lam = 0;
GPCoptions.T = [1 -0.8];

% Convert GPC to an MPC controller.
mpc = gpc2mpc(Gd, GPCoptions);

% Simulate for 50 steps with unmeasured disturbance between
% steps 26 and 28, and reference signal of 0.
SimOptions = mpcsimopt(mpc);
SimOptions.UnmeasuredDisturbance = [zeros(25,1); ...
-0.1*ones(3,1); 0];
sim(mpc, 50, 0, SimOptions);

References [1] Maciejowski, J. M. Predictive Control with Constraints, Pearson
Education Ltd., 2002, pp. 133–142.

See Also “MPC Controller Object” on page 3-2

• “Design Controller Using the Design Tool”

• “Design Controller at the Command Line”

1-20

mpc

Purpose Create MPC controller

Syntax MPCobj=mpc(plant)
MPCobj=mpc(plant,ts)
MPCobj=mpc(plant,ts,p)
MPCobj=mpc(plant,ts,p,m)
MPCobj=mpc(plant,ts,p,m,W)
MPCobj=mpc(plant,ts,p,m,W,MV,OV,DV)
MPCobj=mpc(models,ts,p,m,W,MV,OV,DV)

Description MPCobj=mpc(plant) creates an MPC controller based on the
discrete-time model plant. The model can be specified either as an LTI
object, or as an object in System Identification Toolbox™ format. See
“Identify Plant from Data”.

MPCobj=mpc(plant,ts) specifies the sampling time ts for the MPC
controller. A continuous-time plant is discretized with sampling time
ts. A discrete-time plant is resampled if its sampling time is different
than the controller’s sampling time ts. If plant is a discrete-time model
with unspecified sampling time, namely plant.ts=-1, then Model
Predictive Control Toolbox software assumes that the plant is sampled
with the controller’s sampling time ts. ts has the same unit as the
internal predictive plant model, i.e., plant.TimeUnit.

MPCobj=mpc(plant,ts,p) specifies the prediction horizon p.

MPCobj=mpc(plant,ts,p,m) specifies the control horizon m.

MPCobj=mpc(plant,ts,p,m,W) also specifies the structure W of input,
input increments, and output weights (see “Weights” on page 3-7).

MPCobj=mpc(plant,ts,p,m,W,MV,OV,DV) also specifies limits
on manipulated variables (MV) and output variables (OV), as
well as equal concern relaxation values, units, etc. Names and
units of input disturbances can be also specified in the optional
input DV. The fields of structures MV, OV, and DV are described in
“ManipulatedVariables” on page 3-3, in “OutputVariables” on page 3-4,
and in “DisturbanceVariables” on page 3-6, respectively).

1-21

mpc

MPCobj=mpc(models,ts,p,m,W,MV,OV,DV) where model is a structure
containing models for plant, unmeasured disturbances, measured
disturbances, and nominal linearization values, as described in “Model”
on page 3-9.

Note Other MPC properties are specified by using
set(MPCobj,Property1, Value1,Property2,Value2,...)
or MPCobj.Property=Value.

Construction
and
Initialization

An MPC controller is built in two steps. The first step happens at
construction when the object constructor mpc is invoked, or properties
are changed by a set command. At this first stage, only basic
consistency checks are performed, such as dimensions of signals,
weights, constraints, etc. The second step happens at initialization,
namely when the object is used for the first time by methods such as
mpcmove and sim, that require the full computation of the QP matrices
and the estimator gain. At this second stage, further checks are
performed, such as a test of observability of the overall extended model.

Informative messages are displayed in the command window in both
phases, you can turn them on or off using the mpcverbosity command.

Properties All the parameters defining the MPC control law (prediction horizon,
weights, constraints, etc.) are stored in an MPC object, whose properties
are listed in the following table (MPC Controller Object on page 3-2).

MPC Controller Object

Property Description

ManipulatedVariables (or MV or
Manipulated or Input)

Input and input-rate upper
and lower bounds, ECR values,
names, units, and input target

OutputVariables (or OV or
Controlled or Output)

Output upper and lower bounds,
ECR values, names, units

1-22

mpc

MPC Controller Object (Continued)

Property Description

DisturbanceVariables (or DV or
Disturbance)

Disturbance names and units

Weights Weights defining the performance
function

Model Plant, input disturbance, and
output noise models, and nominal
conditions.

Ts Controller’s sampling time

Optimizer Parameters for the QP solver

PredictionHorizon Prediction horizon

ControlHorizon Number of free control moves or
vector of blocking moves

History Creation time

Notes Text or comments about the MPC
controller object

UserData Any additional data

MPCData (private) Matrices for the QP problem and
other accessorial data

Version (private) Model Predictive Control Toolbox
version number

ManipulatedVariables

ManipulatedVariables (or MV or Manipulated or Input) is an
nu-dimensional array of structures (nu = number of manipulated
variables), one per manipulated variable. Each structure has the fields
described in the following table (Structure ManipulatedVariables on
page 3-3), where p denotes the prediction horizon.

1-23

mpc

Structure ManipulatedVariables

Field Name Content Default

Min 1 to p dimensional vector of lower
constraints on a manipulated
variable u

-Inf

Max 1 to p dimensional vector of upper
constraints on a manipulated
variable u

Inf

MinECR 1 to p dimensional vector
describing the equal concern
for the relaxation of the lower
constraints on u

0

MaxECR 1 to p dimensional vector
describing the equal concern
for the relaxation of the upper
constraints on u

0

Target 1 to p dimensional vector of target
values for the input variable u

'nominal'

RateMin 1 to p dimensional vector of
lower constraints on the rate of a
manipulated variable u

-Inf if problem
is unconstrained,
otherwise -10

RateMax 1 to p dimensional vector of
upper constraints on the rate of a
manipulated variable u

Inf

RateMinECR 1 to p dimensional vector
describing the equal concern
for the relaxation of the lower
constraints on the rate of u

0

1-24

mpc

Structure ManipulatedVariables (Continued)

Field Name Content Default

RateMaxECR 1 to p dimensional vector
describing the equal concern
for the relaxation of the upper
constraints on the rate of u

0

Name Name of input signal. This is
inherited from InputName of the
LTI plant model.

InputName of LTI
plant model

Units String specifying the
measurement units for the
manipulated variable

''

Note Rates refer to the difference Δu(k)=u(k)-u(k-1). Constraints and
weights based on derivatives du/dt of continuous-time input signals
must be properly reformulated for the discrete-time difference Δu(k),
using the approximation du/dt Δu(k)/Ts.

OutputVariables

OutputVariables (or OV or Controlled or Output) is an ny-dimensional
array of structures (ny = number of outputs), one per output signal.
Each structure has the fields described in the following table (Structure
OutputVariables on page 3-5), where p denotes the prediction horizon.

Structure OutputVariables

Field Name Content Default

Min 1 to p dimensional vector of lower
constraints on an output y

-Inf

Max 1 to p dimensional vector of upper
constraints on an output y

Inf

1-25

mpc

Structure OutputVariables (Continued)

Field Name Content Default

MinECR 1 to p dimensional vector
describing the equal concern
for the relaxation of the lower
constraints on an output y

1

MaxECR 1 to p dimensional vector
describing the equal concern
for the relaxation of the upper
constraints on an output y

1

Name Name of output signal. This is
inherited from OutputName of the
LTI plant model.

OutputName of
LTI plant model

Units String specifying the measurement
units for the measured output

''

Integrator Magnitude of integrated white
noise on the output channel (0=no
integrator)

[]

In order to reject constant disturbances due for instance to gain
nonlinearities, the default output disturbance model used in Model
Predictive Control Toolbox software is a collection of integrators driven
by white noise on measured outputs (see “Output Disturbance Model”).
Output integrators are added according to the following rule:

1 Measured outputs are ordered by decreasing output weight (in case
of time-varying weights, the sum of the absolute values over time
is considered for each output channel, and in case of equal output
weight, the order within the output vector is followed).

2 By following such order, an output integrator is added per measured
outputs, unless there is a violation of observability, or you force it by
zeroing the corresponding value in OutputVariables.Integrators).

1-26

mpc

By default, OutputVariables.Integrators is empty on all outputs.
This enforces the default action of Model Predictive Control Toolbox
software, namely add integrators on measured outputs, do not
add integrators on unmeasured outputs. By setting the entry of
OutputVariables(i).Integrators to zero, no attempt will be made
to add integrated white noise on the i-th output . On the contrary,
by setting the entry of OutputVariables(i).Integrators to one, an
attempt will be made to add integrated white noise on the i-th output
(see getoutdist).

DisturbanceVariables

DisturbanceVariables (or DV or Disturbance) is an
(nv+nd)-dimensional array of structures (nv = number of measured input
disturbances, nd = number of unmeasured input disturbances), one
per input disturbance. Each structure has the fields described in the
following table (Structure DisturbanceVariables on page 3-6).

Structure DisturbanceVariables

Field Name Content Default

Name Name of input signal. This is
inherited from InputName of
the LTI plant model.

InputName of LTI
plant model

Units String specifying the
measurement units for
the manipulated variable

''

The order of the disturbance signals within the array
DisturbanceVariables is the following: the first nv entries relate to
measured input disturbances, the last nd entries relate to unmeasured
input disturbances.

1-27

mpc

Note The Name properties of ManipulatedVariables, OutputVariables,
and DisturbanceVariables are read only. You can set signal names in
the Model.Plant.InputName and Model.Plant.OutputNameproperties
of the MPC object, for instance by using the method setname.

Weights

Weights is the structure defining the QP weighting matrices. Unlike
the InputSpecs and OutputSpecs, which are arrays of structures, W
is a single structure containing four fields. The values of these fields
depend on whether you are using the standard quadratic cost function
(see “Standard Form”) or the alternative cost function (see “Alternative
Cost Function”).

Standard Cost Function
The table below, Weights for the Standard Cost Function (MATLAB®

Structure) on page 3-7, lists the content of the four fields where p
denotes the prediction horizon, nu the number of manipulated variables,
ny the number of output variables.

The fields ManipulatedVariables, ManipulatedVariablesRate, and
OutputVariables are arrays with nu, nu, and ny columns, respectively.
If weights are time invariant, then ManipulatedVariables,
ManipulatedVariablesRate, and OutputVariables are row vectors.
However, for time-varying weights, each field is a matrix with up to p
rows. If the number of rows is less than the prediction horizon, p, the
object constructor duplicates the last row to create a matrix with p rows.

Weights for the Standard Cost Function (MATLAB Structure)

Field Name Content Default

ManipulatedVariables (or MV
or Manipulated or Input)

(1 to p)-by-nu dimensional
array of input weights

zeros(1,nu)

ManipulatedVariablesRate
(or MVRate or ManipulatedRate
or InputRate)

(1 to p)-by-nu dimensional
array of input-rate weights

0.1*ones(1,nu)

1-28

mpc

Weights for the Standard Cost Function (MATLAB Structure) (Continued)

Field Name Content Default

OutputVariables (or OV or
Controlled or Output)

(1 to p)-by-ny dimensional
array of output weights

1 (The default for
output weights is the
following: if nu≥ny, all
outputs are weighted
with unit weight; if
nu<ny, nu outputs are
weighted with unit
weight (with preference
given to measured
outputs), while the
remaining outputs
receive zero weight.)

ECR Weight on the slack variable
ε used for softening the
constraints

1e5*(max weight)

The default ECR weight is 105 times the largest weight specified
in ManipulatedVariables, ManipulatedVariablesRate, and
OutputVariables.

Note All weights must be greater than or equal to zero. If all weights
on manipulated variable increments are strictly positive, the resulting
QP problem is always strictly convex. If some of those weights are
zero, the Hessian matrix of the QP problem may become only positive
semidefinite. In order to keep the QP problem always strictly convex,
if the condition number of the Hessian matrix KΔU is larger than 10

12,
the quantity 10*sqrt(eps) is added on each diagonal term. This may
only occur when all input rates are not weighted (WΔu=0) (see “Cost
Function”).

1-29

mpc

Alternative Cost Function
You can specify off-diagonal Q and Rweight matrices in the cost function.
To accomplish this, you must define the fields ManipulatedVariables,
ManipulatedVariablesRate, and OutputVariables as cell arrays, each
containing a single positive-semi-definite matrix of the appropriate
size. Specifically, OutputVariables must be a cell array containing
the ny-by-ny Q matrix, ManipulatedVariables must be a cell array
containing the nu-by-nu Ru matrix, and ManipulatedVariablesRate
must be a cell array containing the nu-by-nu RΔumatrix (see “Alternative
Cost Function”) and the mpcweightsdemo example). You can abbreviate
the field names as shown in Weights for the Standard Cost Function
(MATLAB® Structure) on page 3-7. You can also use diagonal weights
(as defined in Weights for the Standard Cost Function (MATLAB®

Structure) on page 3-7) for one or more of these fields. If you omit a
field, the object constructor uses the defaults shown in Weights for the
Standard Cost Function (MATLAB® Structure) on page 3-7.

For example, you can specify off-diagonal weights, as follows

MPCobj.Weights.OutputVariables={Q};
MPCobj.Weights.ManipulatedVariables={Ru};
MPCobj.Weights.ManipulatedVariablesRate={Rdu};

where Q=Q. Ru=Ru, and Rdu = RΔu are positive semidefinite matrices.

Note You cannot specify off-diagonal time-varying weights.

Model

The property Model specifies plant, input disturbance, and output noise
models, and nominal conditions, according to the model setup described
in “State Estimation”. It is specified through a structure containing
the fields reported in Structure Model Describing the Models Used by
MPC on page 3-9.

1-30

mpc

Structure Model Describing the Models Used by MPC

Field Name Content Default

Plant LTI model or
identified linear
model of the plant

No default

Disturbance LTI model describing
color of input
disturbances

An integrator on each
Unmeasured input channel

Noise LTI model describing
color of plant output
measurement noise

Unit white noise on each
measured output = identity
static gain

Nominal Structure containing
the state, input,
and output values
where Model.Plant
is linearized

See Nominal Values at
Operating Point on page 3-11.

Note Direct feedthrough from manipulated variables to any output in
Model.Plant is not allowed. See “Prediction Model”.

The type of input and output signals is assigned either through the
InputGroup and OutputGroup properties of Model.Plant, or, more
conveniently, through function setmpcsignals, according to the
nomenclature described in Input Groups in Plant Model on page 3-10
and Output Groups in Plant Model on page 3-11.

1-31

mpc

Input Groups in Plant Model

Name Value

ManipulatedVariables (or MV or
Manipulated or Input)

Indices of manipulated variables

MeasuredDisturbances (or MD or
Measured)

Indices of measured disturbances

UnmeasuredDisturbances (or UD
or Unmeasured)

Indices of unmeasured
disturbances

Output Groups in Plant Model

Name Value

MeasuredOutputs (or MO or
Measured)

Indices of measured outputs

UnmeasuredOutputs (or UO or
Unmeasured)

Indices of unmeasured outputs

By default, all inputs are manipulated variables, and all outputs are
measured.

Note With this current release, the InputGroup and OutputGroup
properties of LTI objects are defined as structures, rather than cell
arrays (see the Control System Toolbox™ documentation for more
details).

The structure Nominal contains the nominal values for states, inputs,
outputs and state derivatives/differences at the operating point where
Model.Plant was linearized. The fields are reported in Nominal Values
at Operating Point on page 3-11 (see “Offsets”).

1-32

mpc

Nominal Values at Operating Point

Field Description Default

X Plant state at operating point 0

U Plant input at operating point, including
manipulated variables, measured and
unmeasured disturbances

0

Y Plant output at operating point 0

DX For continuous-time models, DX is the state
derivative at operating point: DX=f(X,U). For
discrete-time models, DX=x(k+1)-x(k)=f(X,U)-X.

0

Ts

Sampling time of the MPC controller. By default, if Model.Plant is a
discrete-time model, Ts=Model.Plant.ts. For continuous-time plant
models, you must specify a sampling time for the MPC controller.

Optimizer

Parameters for the QP optimization. Optimizer is a structure with the
fields reported in the following table (Optimizer Properties on page
3-12).

Optimizer Properties

Field Description Default

MaxIter Maximum number of iterations
allowed in the QP solver

200

Trace On/off 'off'

Solver QP solver used (only 'ActiveSet') 'ActiveSet'

MinOutputECR Minimum positive value allowed for
OutputMinECR and OutputMaxECR

1e-10

1-33

mpc

MinOutputECR is a positive scalar used to specify the minimum allowed
ECR for output constraints. If values smaller than MinOutputECR
are provided in the OutputVariables property of the MPC objects a
warning message is issued and the value is raised to MinOutputECR.

PredictionHorizon

PredictionHorizon is an integer value expressing the number p of
sampling steps of prediction.

ControlHorizon

ControlHorizon is either a number of free control moves, or a vector of
blocking moves (see “Optimization Variables”).

History

History stores the time the MPC controller was created.

Notes

Notes stores text or comments as a cell array of strings.

UserData

Any additional data stored within the MPC controller object.

MPCData

MPCData is a private property of the MPC object used for storing
intermediate operations, QP matrices, internal flags, etc.

Version

Version is a private property indicating the Model Predictive Control
Toolbox version number.

Examples Define an MPC controller based on the transfer function model
s+1/(s2+2s), with sampling time Ts=0.1 s, and satisfying the input
constraint -1≤ u ≤1:

Ts=.1; %Sampling time
MV=struct('Min',-1,'Max',1);
p=20;

1-34

mpc

m=3;

mpc1=mpc(tf([1 1],[1 2 0]),Ts,p,m,[],MV);

See Also set | get

1-35

mpchelp

Purpose MPC property and function help

Syntax mpchelp
mpchelp name
out=mpchelp(`name')
mpchelp(obj)
mpchelp(obj,'name')
out=mpchelp(obj,'name')

Description mpchelp provides a complete listing of Model Predictive Control Toolbox
help.

mpchelp name provides online help for the function or property name.

out=mpchelp(`name') returns the help text in string, out.

mpchelp(obj) displays a complete listing of functions and properties
for the MPC object, obj, along with the online help for the object’s
constructor.

mpchelp(obj,'name') displays the help for function or property, name,
for the MPC object, obj.

out=mpchelp(obj,'name') returns the help text in string, out.

Examples To get help on the MPC method getoutdist, you can type:

mpchelp getoutdist

See Also mpcprops

1-36

mpcmove

Purpose Optimal control action

Syntax u = mpcmove(MPCobj,x,ym,r,v)
[u,Info] = mpcmove(MPCobj,x,ym,r,v)
[u,Info] = mpcmove(MPCobj,x,ym,r,v,Options)

Description u = mpcmove(MPCobj,x,ym,r,v) computes the optimal manipulated
variable moves, u(k). u(k) is calculated given the current estimated
extended state, x(k), the measured plant outputs, ym(k), the output
references, r(k), and the measured disturbances, v(k), at time k. Call
mpcmove repeatedly to simulate closed-loop model predictive control.

[u,Info] = mpcmove(MPCobj,x,ym,r,v) returns additional
information regarding the model predictive controller in the second
output argument Info.

[u,Info] = mpcmove(MPCobj,x,ym,r,v,Options) overrides default
constraints and weights settings in MPCobj with the values specified
by Options, an mpcmoveopt object. Use Options to provide run-time
adjustment in constraints and weights during the closed-loop
simulation.

Tips • mpcmove updates x.

• If ym, r or v is specified as [], mpcmove uses the appropriate
MPCobj.Model.Nominal value instead.

• To view the predicted optimal behavior for the entire prediction
horizon, plot the appropriate sequences provided in Info.

• To determine the optimization status, check Info.Iterations and
Info.QPCode.

Input
Arguments

MPCobj

mpc object that defines the model predictive controller.

x

mpcstate object that contains the following:

1-37

mpcmove

• Estimated plant model states, x(k|k-1)

• Estimated input and output disturbance model states, xd(k|k-1)

• Estimated measurement noise model states, xm(k|k-1)

• Last controller moves, u(k-1)

To initialize x, use x = mpcstate(MPCobj) and modify default
properties as needed.

You may need to change the value of x before using it at the next time
step under certain circumstances. Suppose that the optimal value for
u calculated in the previous call to mpcmove was not used in the plant
for some reason (e.g., saturation). You must replace LastMove with
the values actually used.

mpcmove updates all four properties of x to prepare for an mpcmove call
at the next time step. For example, it copies the recommended u values
into the LastMove field.

To retain the original contents of x, create a copy of it before calling
mpcmove.

ym

1-by-nym vector of current measured output values at time k.

nym is the number of measured outputs.

r

p-by-ny array of future reference values for the outputs, where p is the
prediction horizon and ny is the number of outputs. The i

th row of r
defines the reference values at time k+i, for i = 1,...,p.

The first row must contain the reference signal at time k+1. Additional
rows represent known future references and are optional (future values
are unknown in most applications). If you supply fewer than p rows of
data, mpcmove duplicates the last row to fill the array.

1-38

mpcmove

You cannot preview the reference signal (also referred to as look-ahead
and anticipation) if r contains a single row. To support reference
previewing, supply at least two rows of data for r.

v

p-by-nmd array of current and future measured disturbance, where p is
the prediction horizon and nmd is the number of measured disturbances
used in feed-forward control. The ith row of v defines the measured
disturbance values at time k+i-1, for i = 1,...,p.

The first row must contain the current measured disturbance values.
Additional rows represent known future values and are optional (future
values are unknown in most applications). If you supply fewer than p
rows of data, mpcmove duplicates the last row to fill the array.

You cannot preview the measured disturbance signal (also referred to
as look-ahead and anticipation) if v contains a single row. To support
disturbance previewing, supply at least two rows of data for v.

Options

mpcmoveopt object that overrides constraints and weights in MPCobj.
This approach is computationally efficient to simulate run-time changes
in controller tuning and limit values. The same behavior can be found
in a Simulink® MPC Controller block when supplied with controller
tuning and limit input signals.

Output
Arguments

u

1-by-nu array of optimal manipulated variable moves, where nu is the
number of manipulated variables.

mpcmove holds u at its most recent successful solution if the QP solver
fails to find a solution for the current time k.

Info

Information regarding the model predictive controller.

Info is a structure with the following fields:

1-39

mpcmove

• Uopt— p+1-by-nu array containing the optimal manipulated variable
adjustments (moves),where p is the prediction horizon and nu is the
number of manipulated variables.

The first row is the same as u, which is to be applied at the current
time k. Uopt(i,:) contains the predicted optimal values at time
k+i-1, for i = 1,...,p+1.

mpcmove does not calculate optimal control moves at time k+p and
therefore it sets Uopt(p+1,:) to NaN.

• Yopt — p+1-by-ny array containing the predicted output variable
sequence, where p is the prediction horizon and ny is the number
of outputs.

The first row contains the current outputs at time k after state
estimation. Yopt(i,:) contains the values at time k+i-1, for
i = 1,...,p+1.

• Xopt — p+1-by-nx array containing the predicted state variable
sequence, where p is the prediction horizon and nx is the number of
states.

The first row contains the current states at time k as determined by
state estimation.Xopt(i,:) contains the values at time k+i-1, for
i = 1,...,p+1.

• Topt — p+1-by-1 vector of time intervals where Topt(1)=0
(representing the current time) and Topt(i)=Ts*(i-1), where
Ts=MPCobj.Ts, the controller sample time and for i = 1,...,p+1.

Use when plotting Uopt, Yopt and/or Xopt sequences.

• Slack— Slack variable, ε, used in constraint softening.

Slack is a scalar that may have the following values:

- 0— All constraints were satisfied for the entire prediction horizon

- >0 — At least one soft constraint is violated and represents the
worst-case soft constraint violation (scaled by your ECR values for
each constraint) when more than one constraints are violated.

1-40

mpcmove

See “Optimization Problem” for details.

• Iterations — QP solution result.

Iterations is a scalar integer that may have the following values:

- >0 — Number of iterations needed to solve the quadratic
programming (QP) problem that determines the optimal
sequences.

- 0 — QP problem could not be solved in the allowed maximum
number of iterations.

- -1— QP problem was infeasible. A QP problem is infeasible if no
solution can satisfy all the hard constraints.

- -2— Numerical error occurred when solving the QP problem.

• QPCode — QP solution status.

QPCode is a String that may have the following values:

- 'feasible'— Optimal solution was obtained (Iterations > 0)

- 'infeasible' — QP solver detected a problem with no feasible
solution (Iterations = -1) or a numerical error occurred
(Iterations = -2)

- 'unreliable'— QP solver failed to converge (Iterations = 0)

• Cost — Cost of the objective function.

Cost quantifies the degree to which the controller has achieved its
objectives and is a non-negative scalar value. Cost is only meaningful
when QPCode is 'feasible'.

See “Optimization Problem” for details.

Examples Analyze Closed-Loop Response

Perform closed-loop simulation of a plant with one MV and one
measured OV.

Define a plant model and create a model predictive controller with MV
constraints.

1-41

mpcmove

ts = 2;
Plant = ss(0.8,0.5,0.25,0,ts);
MPCobj = mpc(Plant);
MPCobj.MV(1).Min = -2;
MPCobj.MV(1).Max = 2;

-->The "PredictionHorizon" property of "mpc" object is empty. Trying Pred
-->The "ControlHorizon" property of the "mpc" object is empty. Assuming 2
-->The "Weights.ManipulatedVariables" property of "mpc" object is empty.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is emp
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assum

Initialize an mpcstate object for simulation. Use the default state
properties.

x = mpcstate(MPCobj);

-->Integrated white noise added on measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming whit

Set the reference signal. There is no measured disturbance.

r = 1;

Simulate the closed-loop response by calling mpcmove iteratively.

t = [0:ts:40];
N = length(t);
y = zeros(N,1);
u = zeros(N,1);
for i = 1:N

% simulated plant and predictive model are identical
y(i) = 0.25*x.Plant;
u(i) = mpcmove(MPCobj,x,y(i),r);

end

y and u store the OV and MV values.

1-42

mpcmove

Analyze the result.

[ts,us] = stairs(t,u);
plot(ts,us,'r-',t,y,'b--');
legend('MV','OV');

Modify the MV upper bound as the simulation proceeds using an
mpcmoveopt object.

MPCopt = mpcmoveopt;

1-43

mpcmove

MPCopt.MVMin = -2;
MPCopt.MVMax = 2;

Simulate the closed-loop response and introduce the real-time upper
limit change at eight seconds (the fifth iteration step).

x = mpcstate(MPCobj);
y = zeros(N,1);
u = zeros(N,1);
for i=1:N

% simulated plant and predictive model are identical
y(i) = 0.25*x.Plant;
if i == 5
MPCopt.MVMax = 1;

end
u(i) = mpcmove(MPCobj,x,y(i),r,[],MPCopt);

end

Analyze the result.

[ts,us] = stairs(t,u);
plot(ts,us,'r-',t,y,'b--');
legend('MV','OV');

1-44

mpcmove

Evaluate Scenario at Specific Time Instant

Define a plant model.

ts = 2;
Plant = ss(0.8,0.5,0.25,0,ts);

Create a model predictive controller with MV and MVRate constraints.
The prediction horizon is ten intervals. The control horizon is blocked.

1-45

mpcmove

MPCobj = mpc(Plant, ts, 10, [2 3 5]);
MPCobj.MV(1).Min = -2;
MPCobj.MV(1).Max = 2;
MPCobj.MV(1).RateMin = -1;
MPCobj.MV(1).RateMax = 1;

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is emp
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assum

Initialize an mpcstate object for simulation from a particular state.

x = mpcstate(MPCobj);
x.Plant = 2.8;
x.LastMove = 0.85;

-->Integrated white noise added on measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming whit

Compute the optimal control at current time.

y = 0.25*x.Plant;
r = 1;
[u,Info] = mpcmove(MPCobj,x,y,r);

-->Integrated white noise added on measured output channel #1.
-->The "Model.Noise" property of the "mpc" object is empty. Assuming whit

Analyze the predicted optimal sequences.

[ts,us] = stairs(Info.Topt,Info.Uopt);
plot(ts,us,'r-',Info.Topt,Info.Yopt,'b--');
legend('MV','OV');

1-46

mpcmove

plot ignores Info.Uopt(end) as it is NaN.

Examine the optimal cost.

Info.Cost

ans =

0.0793

1-47

mpcmove

Alternatives • Use sim for plant mismatch and noise simulation when not using
run-time constraints or weight changes.

• Use mpctool to graphically and interactively combine model
predictive design and simulation.

• Use the MPC Controller block in Simulink and for code generation.

See Also mpc | mpcmoveopt | mpcstate | review | sim | setestim | getestim

Tutorials • MPC Control with Anticipative Action (Look-Ahead)

• MPC Control with Input Quantization Based on Comparing the
Optimal Costs

• Analysis of Control Sequences Optimized by MPC on a Double
Integrator System

1-48

mpcmoveopt

Purpose Options set for mpcmove

Syntax options = mpcmoveopt

Description options = mpcmoveopt creates an mpcmoveopt object, with default
values for its properties. Use this object with mpcmove to allow run-time
adjustment of the weights and constraints of the Model Predictive
Controller, an mpc object, that is operating.

Tips • The number of manipulated variables (nu) and output variables (ny)
for the mpcmoveopt object must match that of the corresponding mpc
object.

• If any weight property in options is set to [] (default), mpcmove uses
the corresponding weight specified in the mpc object.

• In general, constraint specifications of options must be consistent
with those of the corresponding mpc object.

If all of the four constraint properties of options are set to []
(default), mpcmove uses the existing constraints specified for the
corresponding mpc object. The result will be the same as if there are
no run-time constraint changes.

Otherwise:

- Constraints set to [] are treated as unbounded signals. The
corresponding constraint settings for the mpc object must also be
unbounded.

- Constraints not set to [] are treated as bounded signals. The
corresponding constraint settings for the mpc object must also be
bounded.

These requirements make the Model Predictive Controller object
behave consistently with the corresponding MPC Controller block
in Simulink

A conflict may arise when you have a mixture of bounded and
unbounded variables for one or more constraint properties of

1-49

mpcmoveopt

options. It may be resolved by defining compatible constraints for
the mpc object and corresponding mpcmoveopt object.

For example, suppose ny = 2, and your mpc object defines a maximum
for the first output variable but the second has no upper bound. If,

- options.OutputMax = [], then mpcmove interprets this as an
attempt to remove the upper bound on the first output.

- options.OutputMax is not [], then, because all entries must
be finite, mpcmove interprets this as an attempt to impose a new
upper bound on the second output.

To avoid this conflict, modify your mpc object to have a large but
finite upper bound on the second output. It can then be paired with
options, containing finite OutputMax values, without conflict.

Output
Arguments

options

Options for the mpcmove command with the following fields:

• OutputWeights — 1-by-ny vector of output variable tuning weights,
where ny is the number of output variables.mpcmove replaces the
Weight.OutputVariables field of the corresponding mpc object with
this vector. The weights must be finite and real values.

• MVRateWeights — 1-by-nu vector of manipulated variable rate
tuning weights, where nu is the number of manipulated variables.
mpcmove replaces the Weight.ManipulatedVariablesRate field of
the corresponding mpc object with this vector. The weights must
be finite and real values.

• ECRWeight — Scalar weight on the slack variable used for
constraint softening. mpcmove replaces the Weight.ECR field of the
corresponding mpc object with this value. The weight must be a finite
and real value.

• OutputMin — 1-by-ny vector of lower bounds on the output variables,
where ny is the number of output variables. mpcmove replaces the
OutputVariables(i).Min field of the corresponding mpc object with
this vector, for i = 1,...,ny.

1-50

mpcmoveopt

• OutputMax — 1-by-ny vector of upper bounds on the output variables,
where ny is the number of output variables. mpcmove replaces the
OutputVariables(i).Max field of the corresponding mpc object with
this vector, for i = 1,...,ny.

• MVMin — 1-by-nu vector of lower bounds on the manipulated
variables, where nu is the number of manipulated variables.
mpcmove replaces the ManipulatedVariables(i).Min field of the
corresponding mpc object with this vector, for i = 1,...,nu.

• MVMax — 1-by-nu vector of upper bounds on the manipulated
variables, where nu is the number of manipulated variables.
mpcmove replaces the ManipulatedVariables(i).Max field of the
corresponding mpc object with this vector, for i = 1,...,nu.

• OnlyComputeCost — Logical value to control whether the optimal
sequence is to be calculated and exported.

- 0 (default) sets mpcmove to compute and return the optimal cost
and the optimal sequence of the Model Predictive Controller
objective function.

- 1 sets mpcmove to compute and return only the optimal cost of the
Model Predictive Controller objective function.

Examples Use an mpcmoveopt object to vary an MV upper bound during a
simulation employing mpcmove. The upper bound decreases step-wise
from 2 to 1 when elapsed time exceeds 4 seconds. Also, setting
OnlyComputeCost = 1 causes the Info object returned by mpcmove to
contain the cost only.

Define an mpcmoveopt object and initialize some of its fields.

OPTobj = mpcmoveopt;
OPTobj.OnlyComputeCost = true;
OPTobj.MVMin = -2;

Define a plant model and a model predictive controller object.

ts = 2;

1-51

mpcmoveopt

Plant = ss(0.8, 0.5, 0.25, 0, ts);
MPCobj = mpc(Plant, ts);
MPCobj.MV(1).Min = -2;
MPCobj.MV(1).Max = 2;

Perform mpcmove simulation.

x = mpcstate(MPCobj);
r = 1;
v = [];
t = [0:ts:10];
N = length(t);
y = zeros(N,1);
u = zeros(N,1);
for i = 1:N

y(i) = 0.25*x.Plant;
% Use the MPCMOVEOPT object to modify the MV upper bound in
% real time.
if t(i) <= 4

OPTobj.MVMax = 2;
else

OPTobj.MVMax = 1;
end
[u(i), Info] = mpcmove(MPCobj, x, y(i), r, v, OPTobj);

end

Analyze the results.

[ts, us] = stairs(t, u);
plot(ts, us,'b-', t, y,'r--')
legend('Reference','Output');

1-52

mpcmoveopt

Alternatives When you use mpcmove, an mpcmoveopt object is optional. As an
alternative, you can modify the weight, constraint definitions, or both
before calling mpcmove. This approach is usually less computationally
efficient, but it avoids potential conflicts with constraint definitions
when mixed bounded and unbounded variables are present.

See Also mpc | mpcmove | setconstraint | setterminal

1-53

mpcprops

Purpose Provide help on MPC controller’s properties

Syntax mpcprops

Description mpcprops displays details on the generic properties of MPC controllers.
It provides a complete list of all the fields of MPC objects with a brief
description of each field and the corresponding default values.

See Also set | get | mpchelp

1-54

mpcsimopt

Purpose MPC simulation options

Syntax SimOptions=mpcsimopt(mpcobj)

Description mpcsimopt creates an mpcsimopt object for specifying additional
parameters for simulation with sim.

SimOptions=mpcsimopt(mpcobj) creates an empty object SimOptions
which is compatible with the MPC object mpcobj. You must use set /
get to change simulation options.

Properties MPC Simulation Options Properties

Property Description

PlantInitialState Initial state vector of the plant model
generating the data.

ControllerInitialState Initial condition of the MPC controller.
This must be a valid @mpcstate object.

Note Nonzero values of
ControllerInitialState.LastMove
are only meaningful if there are
constraints on the increments of the
manipulated variables.

UnmeasuredDisturbance Unmeasured disturbance signal entering
the plant.

An array with as many columns as
unmeasured disturbances.

1-55

mpcsimopt

MPC Simulation Options Properties (Continued)

Property Description

InputNoise Noise on manipulated variables.

An array with as many columns as
manipulated variables. The last sample
of the array is extended constantly over
the horizon to obtain the correct size.

OutputNoise Noise on measured outputs.

An array with as many columns as
measured outputs. The last sample of
the array is extended constantly over
the horizon to obtain the correct size.

RefLookAhead Preview on reference signal ('on' or
'off').

MDLookAhead Preview on measured disturbance signal
('on' or 'off').

Constraints Use MPC constraints ('on' or 'off').

Model Model used in simulation for generating
the data.

This property is useful for simulating
the MPC controller under model
mismatch. The LTI object specified in
Model can be either a replacement for
Model.Plant, or a structure with fields
Plant and Nominal. By default, Model
is equal to MPCobj.Model (no model
mismatch). If Model is specified, then
PlantInitialState refers to the initial
state of Model.Plant and is defaulted to
Model.Nominal.x.

1-56

mpcsimopt

MPC Simulation Options Properties (Continued)

Property Description

If Model.Nominal is empty,
Model.Nominal.U and
Model.Nominal.Y are inherited
from MPCobj.Model.Nominal.
Model.Nominal.X/DX is only inherited if
both plants are state-space objects with
the same state dimension.

StatusBar Display the wait bar ('on' or 'off').

MVSignal Sequence of manipulated variables (with
offsets) for open-loop simulation (no
MPC action).

An array with as many columns as
manipulated variables.

OpenLoop Perform open-loop simulation.

Examples We want to simulate the MPC control of a multi-input multi-output
(MIMO) system under predicted / actual plant model mismatch. The
system has two manipulated variables, two unmeasured disturbances,
and two measured outputs.

% Open-loop system parameters
p1 = tf(1,[1 2 1])*[1 1; 0 1];
plant = ss([p1 p1]);

% Define I/O types
plant=setmpcsignals(plant,'MV',[1 2],'UD',[3 4]);

% Define I/O names (optional)
set(plant,'InputName',{'mv1','mv2','umd3','umd4'});

% Model for unmeasured input disturbances

1-57

mpcsimopt

distModel = eye(2,2)*ss(-.5,1,1,0);

% Create MPC object
mpcobj = mpc(plant,1,40,2);
mpcobj.Model.Disturbance = distModel;

% Closed-loop MPC simulation with model mismatch
% and unforeseen unmeasured disturbance inputs

% Define plant model generating the data
p2 = tf(1.5,[0.1 1 2 1])*[1 1; 0 1];
psim = ss([p2 p2 tf(1,[1 1])*[0;1]]);
psim=setmpcsignals(psim,'MV',[1 2],'UD',[3 4 5]);

% Closed-loop simulation
dist=ones(1,3); % Unmeasured disturbance trajectory
refs=[1 2]; % Output reference trajectory
Tf=100; % Total number of simulation steps

options=mpcsimopt(mpcobj);
options.unmeas=dist;
options.model=psim;

sim(mpcobj,Tf,refs,options);

See Also sim

1-58

mpcstate

Purpose Define MPC controller state

Syntax xmpc = mpcstate(MPCobj,xp,xd,xn,u)
xmpc = mpcstate(MPCobj)
xmpc = mpcstate

Description xmpc = mpcstate(MPCobj,xp,xd,xn,u) defines an mpcstate object for
state estimation and optimization in an MPC control algorithm based
on the MPC object MPCobj. The state of an MPC controller contains
the estimates of the states x(k), xd(k), xm(k), where x(k) is the state
of the plant model, xd(k) is the overall state of the input and output
disturbance model, xm(k) is the state of the measurement noise model,
and the value of the last vector u(k-1) of manipulated variables. The
overall state is updated from the measured output ym(k) by a linear
state observer (see “State Observer”).

xmpc = mpcstate(MPCobj) returns a default extended initial state that
is compatible with the MPC controller MPCobj. Such a default state has
plant state and previous input initialized at nominal values, and the
states of the disturbance and noise models at zero.

Note that mpcstate objects are updated by mpcmove through the
internal state observer based on the extended prediction model.

xmpc = mpcstate returns an empty mpcstate object.

Properties The mpcstate object type contains the state of an MPC controller. Its
properties are listed in MPC State Object Properties on page 3-16.

1-59

mpcstate

MPC State Object Properties

Property Description

Plant Array of plant states. Values are absolute, i.e., they
include possible state offsets (cf.Model.Nominal.X).

Disturbance Array of states of unmeasured disturbance models.
This contains the states of the input disturbance
model and, appended below, the states of the
unmeasured output disturbances model.

Noise Array of states of measurement noise model.

LastInput Array of previous manipulated variables u(k-1).
Values are absolute, i.e., they include possible input
offsets (cf. Model.Nominal.U).

The command

mpcstate(mpcobj)

returns a zero extended initial state compatible with the MPC object
mpcobj, and with mpcobj.Plant and mpcobj.LastInput initialized at
the nominal values specified in mpcobj.Model.Nominal.

See Also getoutdist | setoutdist | setindist | getestim | setestim | ss
| mpcmove

1-60

mpctool

Purpose Start Model Predictive Controller GUI

Syntax mpctool
mpctool(MPCobj)
mpctool(MPCobj,'objname')
mpctool(MPCobj1, MPCobj2, ...)
mpctool(MPCobj1, 'objname1', MPCobj2, 'objname2', ...)
mpctool('TaskName')

Description mpctool starts the GUI. For more information about designing and
testing model predictive controllers, see “Working with the Design Tool”.

mpctool(MPCobj) starts the GUI and loads MPCobj, which is an existing
controller object.

mpctool(MPCobj,'objname') assigns objname (specified as a string) to
the controller you are loading into the GUI. If you do not specify a name,
the GUI uses the name of the variable that stores the controller object.

mpctool(MPCobj1, MPCobj2, ...) loads the specified list of
controllers.

mpctool(MPCobj1, 'objname1', MPCobj2, 'objname2', ...) loads
the specified list of controllers and assigns each controller the specified
name.

mpctool('TaskName') starts the GUI and creates a new Model
Predictive Control design task with the name specified by the string
'TaskName'.

See Also mpc

1-61

mpcverbosity

Purpose Change toolbox verbosity level

Syntax mpcverbosity on
mpcverbosity off
old_status = mpcverbosity(new_status)
mpcverbosity

Description mpcverbosity on enables messages displaying default operations
taken by Model Predictive Control Toolbox software during the creation
and manipulation of model predictive control objects.

mpcverbosity off turns messages off.

old_status = mpcverbosity(new_status) sets the verbosity level
to the specified value, new_status. The function returns the original
value of the verbosity level as old_status. Specify new_status as a
string with the value of either 'on' or 'off' .

mpcverbosity just shows the verbosity status.

By default, messages are turned on.

See also “Construction and Initialization” on page 3-13 .

See Also mpc

1-62

pack

Purpose Reduce size of MPC object in memory

Note pack will be removed in a future version.

Syntax pack(MPCobj)

Description pack(MPCobj) cleans up information build at initialization and stored
in the MPCData field of the MPC object MPCobj. This reduces the amount
of bytes in memory required to store the MPC object. For MPC objects
based on large prediction models, it is recommended to pack the object
before saving the object to file, in order to minimize the size of the file.

See Also mpc | getmpcdata | setmpcdata | compare

1-63

plot

Purpose Plot responses generated by MPC simulations

Syntax plot(MPCobj,t,y,r,u,v,d)

Description plot(MPCobj,t,y,r,u,v,d) plots the results of a simulation based on
the MPC object MPCobj. t is a vector of length Nt of time values, y is
a matrix of output responses of size [Nt,Ny] where Ny is the number of
outputs, r is a matrix of setpoints and has the same size as y, u is a
matrix of manipulated variable inputs of size [Nt,Nu] where Nu is the
number of manipulated variables, v is a matrix of measured disturbance
inputs of size [Nt,Nv] where Nv is the number of measured disturbance
inputs, and d is a matrix of unmeasured disturbance inputs of size
[Nt,Nd] where Nd is the number of unmeasured disturbances input.

See Also sim | mpc

1-64

qpdantz

Purpose Solve convex quadratic program using Dantzig-Wolfe’s algorithm

Note qpdantz will be removed in a future version. Use quadprog
(requires Optimization Toolbox™) instead.

Syntax [xopt,lambda,how]=qpdantz(H,f,A,b,xmin)
[xopt,lambda,how]=qpdantz(H,f,A,b,xmin,maxiter)

Description [xopt,lambda,how]=qpdantz(H,f,A,b,xmin) solves the convex
quadratic program

min
1
2

x Hx f xT T+

subject to Ax ≤ b,x ≥ xmin

using Dantzig-Wolfe’s active set method [2]. The Hessian matrix H
should be positive definite. By default, xmin=1e-3. Vector xopt is the
optimizer. Vector lambda contains the optimal dual variables (Lagrange
multipliers).

The exit flag how is either 'feasible', 'infeasible' or 'unreliable'.
The latter occurs when the solver terminates because the maximum
number maxiter of allowed iterations was exceeded.

The solver is implemented in qpsolver.mex. Dantzig-Wolfe’s algorithm
uses the direction of the largest gradient, and the optimum is usually
found after about n+q iterations, where n=dim(x) is the number of
optimization variables, and q=dim(b) is the number of constraints.
More than 3(n+q) iterations are rarely required (see Chapter 7.3 of [2]).

Examples Solve a random QP problem using quadprog from the Optimization
Toolbox software and qpdantz.

n=50; % Number of vars
H=rand(n,n);H=H'*H;H=(H+H')/2;

1-65

qpdantz

f=rand(n,1);
A=[eye(n);-eye(n)];
b=[rand(n,1);rand(n,1)];
x1=quadprog(H,f,A,b,[],[],-100,[],[],...
optimset('LargeScale','off','Algorithm','active-set'));
[x2,how]=qpdantz(H,f,A,b,-100*ones(n,1));

References [1] Fletcher, R. Practical Methods of Optimization, John Wiley & Sons,
Chichester, UK, 1987.

[2] Dantzig, G.B. Linear Programming and Extensions, Princeton
University Press, Princeton, 1963.

1-66

review

Purpose Examine MPC controller for design errors and stability problems at
run-time

Syntax review(mpcobj)

Description review(mpcobj) checks for potential design issues in the Model
Predictive Controller mpcobj and generates a report. review performs
the following diagnostic tests:

• Is the optimization problem to be solved online well defined?

• Is the controller internally stable?

• Is the closed loop system stable when no constraints are active and
there is no model mismatch?

• Is the controller able to eliminate steady-state tracking error when
no constraints are active?

• Is there a likelihood that constraint definitions will result in an
ill-conditioned or infeasible optimization problem?

Tips • Use review iteratively to check your initial MPC design or whenever
you make substantial changes to mpcobj. Make the recommended
changes to your controller to eliminate potential problems.

• If you design your controller using MPC Design Tool, export the
controller to the MATLAB Workspace, and analyze it using review.

• review does not modify mpcobj.

• review cannot detect all possible performance factors. So,
additionally test your design using techniques such as simulations.

Input
Arguments

mpcobj

Non-empty Model Predictive Controller (mpc) object

Examples Create a Model Predictive Controller with hard upper and lower bounds
on the manipulated variable and its rate-of-change.

1-67

review

Create a discrete Model Predictive Controller.

% Create a Model Predictive Controller
Plant = tf(1, [10 1]);
ts = 2;
MPCobj = mpc(Plant,ts);

Specify hard bounds on the MV and its rate of change.

MV = MPCobj.MV;
MV.Min = -2;
MV.Max = 2;
MV.RateMin = -4;
MV.RateMax = 4;
MPCobj.MV = MV;

Review the design.

review(MPCobj)

1-68

review

review flags the potential constraint conflict that could result if you
applied this controller to a real process.

Examine the warning by clicking Hard MV Constraints.

1-69

review

Alternatives review automates certain tests that you could perform yourself.

To test for steady-state tracking errors, use cloffset.

To test the internal stability of a controller, check the eigenvalues of
the mpc object. Use ss to convert the mpc object to a state-space model
and call isstable.

See Also cloffset | mpc | ss

Tutorials • Reviewing Model Predictive Controller Design for Potential Stability
and Robustness Issues

• “Simulation and Code Generation Using Simulink Coder”

1-70

sensitivity

Purpose Compute effect of controller tuning weights on performance

Syntax [J, sens] = sensitivity(MPCobj, PerfFunc, PerfWeights, Tstop, r, v,
simopt, utarget)

[J, sens] = sensitivity(MPCobj,'perf_fun',param1,param2,...)

Description The sensitivity function is a controller tuning aid. J specifies a
scalar performance metric. sensitivity computes J and its partial
derivatives with respect to the controller tuning weights. These
sensitivities suggest tuning weight adjustments that should improve
performance, i.e., reduce J.

[J, sens] = sensitivity(MPCobj, PerfFunc, PerfWeights,
Tstop, r, v, simopt, utarget) calculates the scalar performance
metric, J, and sensitivities, sens, for the controller defined by the MPC
controller object MPCobj.

PerfFunc must be one of the following strings:

'ISE' (integral squared error) for which the performance metric is

J w e w e w uj
y

yij j
u

uij j
u

ij
j

n

j

n

i

uy

= + +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟==

∑∑ () [() ()]2 2 2

11

Δ Δ
==
∑

1

Tstop

'IAE' (integral absolute error) for which the performance metric is

J w e w e w uj
y

yij j
u

uij j
u

ij
j

n

j

n

i

T uy

= + +
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟===

∑∑| | (| | | |)Δ Δ
111

sstop

∑

'ITSE' (integral of time-weighted squared error) for which the
performance metric is

J i t w e w e w uj
y

yij j
u

uij j
u

ij
j

n

j

n uy

= + +
⎛

⎝
⎜
⎜

⎞

⎠==
∑∑Δ ΔΔ() [() ()]2 2 2

11

⎟⎟
⎟=

∑
i

Tstop

1

1-71

sensitivity

J i t w e w e w u
i

Tstop

j
y

yij j
u

uij j
u

ij
j

n

j

n uy

= + +
= ==
∑ ∑∑Δ ΔΔ

1 11
| | (| | | |)

⎛⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

'ITAE' (integral of time-weighted absolute error) for which the
performance metric is

In the above expressions ny is the number of controlled outputs and nu
is the number of manipulated variables. eyij is the difference between
output j and its setpoint (or reference) value at time interval i. euij is
the difference between manipulated variable j and its target at time
interval i.

The w parameters are non-negative performance weights defined by the
structure PerfWeights, which contains the following fields:

'OutputVariables': 1 by ny vector containing the wj
y values

'ManipulatedVariables': 1 by nu vector containing the wj
u values

'ManipulatedVariablesRate': 1 by nu vector containing the wj
uΔ

values

If PerfWeights is unspecified, it defaults to the corresponding weights
in MPCobj. In general, however, the performance weights and those
used in the controller have different purposes and should be defined
accordingly.

Inputs Tstop, r, v, and simopt define the simulation scenario used to
evaluate performance. See sim for details.

Tstop is the integer number of controller sampling intervals to be
simulated. The final time for the simulations will be Tstop × Δt, where
Δt is the controller sampling interval specified in MPCobj.

The optional input utarget is a vector of nu manipulated variable
targets. Their defaults are the nominal values of the manipulated
variables. Δuij is the change in manipulated variable j and its target at
time interval i.

1-72

sensitivity

The structure variable sens contains the computed sensitivities (partial
derivatives of J with respect to the MPCobj tuning weights.) Its fields are

'OutputVariables' (1 by ny) sensitivities with respect to
MPCobj.Weights.OutputVariables

'ManipulatedVariables' (1 by nu) sensitivities with respect to
MPCobj.Weights.ManipulatedVariables

'ManipulatedVariablesRate' (1 by nu) sensitivities with respect to
MPCobj.Weights.ManipulatedVariablesRate

See “Weights” on page 3-7 for details on the tuning weights contained
in MPCobj.

[J, sens] =
sensitivity(MPCobj,'perf_fun',param1,param2,...) employs a
performance function ’perf_fun’ to define J. Its function definition
must be in the form

function J = perf_fun(MPCobj, param1, param2, ...)

i.e., it must compute J for the given controller and optional parameters
param1, param2, ... and it must be on the MATLAB path.

Note While performing the sensitivity analysis, the software ignores
time-varying, nondiagonal, and ECR slack variable weights.

Examples Suppose variable MPCobj contains a default controller definition for a
plant with two controlled outputs, three manipulated variables, and no
measured disturbances. Compute its performance and sensitivities
as follows:

PerfFunc = 'IAE';
PerfWts.OutputVariables = [1 0.5];
PerfWts.ManipulatedVariables = zeros(1,3);
PerfWts.ManipulatedVariablesRate = zeros(1,3);
Tstop = 20;

1-73

sensitivity

r = [1 0];
v = [];
simopt = mpcsimopt;
utarget = zeros(1,3);
[J, sens] = sensitivity(MPCobj, PerfFunc, PerfWts, Tstop, ...
r, v, simopt, utarget)

The simulation scenario in the above example uses a constant r = 1 for
output 1 and r = 0 for output 2. In other words, the scenario is a unit
step in the output 1 setpoint.

See Also mpc | sim

1-74

set

Purpose Set or modify MPC object properties

Syntax set(MPCobj,'Property',Value)
set(MPCobj,'Property1',Value1,'Property2',Value2,...)
set(MPCobj,'Property')
set(sys)

Description The set function is used to set or modify the properties of an MPC
controller (see “MPC Controller Object” on page 3-2 for background
on MPC properties). Like its Handle Graphics® counterpart, set uses
property name/property value pairs to update property values.

set(MPCobj,'Property',Value) assigns the value Value to the
property of the MPC controller MPCobj specified by the string
'Property'. This string can be the full property name (for example,
'UserData') or any unambiguous case-insensitive abbreviation (for
example, 'user').

set(MPCobj,'Property1',Value1,'Property2',Value2,...) sets
multiple property values with a single statement. Each property
name/property value pair updates one particular property.

set(MPCobj,'Property') displays admissible values for the property
specified by 'Property'. See “MPC Controller Object” on page 3-2 for
an overview of legitimate MPC property values.

set(sys) displays all assignable properties of sys and their admissible
values.

See Also mpc | get | mpcprops

1-75

setconstraint

Purpose Custom constraints on plant inputs and outputs

Syntax setconstraint(MPCobj,E,F,G)
setconstraint(MPCobj,E,F,G,V)
setconstraint(MPCobj,E,F,G,V,S)

Description setconstraint(MPCobj,E,F,G) adds constraints of the following form
to an MPC controller MPCobj:

Eu(k + j|k) + Fy(k + j|k) ≤ G

where:

j = 0, ... , p
p is the prediction horizon length
y are the measured and unmeasured outputs
u are the manipulated variables
E, F, and G are constants. Each row of E, F, and G represents a
linear constraint to be imposed at each prediction horizon step.

setconstraint(MPCobj,E,F,G,V) adds constraints of the following
form:

Eu(k + j|k) + Fy(k + j|k) ≤ G + εV

where,

V is a constant representing the Equal Concern for the Relaxation
(ECR)
ε is the slack variable used for constraint softening (as in Equation
2-3 of “Standard Form”)

setconstraint(MPCobj,E,F,G,V,S) adds constraints of the following
form:

Eu(k + j|k) + Fy(k + j|k) + Sv(k + j|k) ≤ G + εV

where:

1-76

setconstraint

v are the measured disturbances
S is a constant

Tips • The outputs y are being predicted using a model. If the model is
imperfect, there is no guarantee that a constraint can be satisfied.

• Because u(k + p|k) is not optimized by the MPC controller, the last
constraint at time k + p assumes that u(k+p|k) = u(k+p–1|k).

Input
Arguments

MPCobj

MPC controller, specified as an MPC Controller object

E

Constant used in custom constraints, specified as a matrix with:

nu columns, where nu is the number of manipulated variables
Same number of rows as F, G, V, and S

To remove all the mixed constraints, use [] or zero matrix for both
the E and F matrices.

F

Constant used in custom constraints, specified as a matrix with:

ny columns, where ny is the number of controlled outputs (measured
and unmeasured)
Same number of rows as E, G, V, and S

To remove all the mixed constraints, use [] or zero matrix for both
the E and F matrices.

G

Constant used in custom constraints, specified as a column vector with
the same number of rows as E, F, V, and S.

V

1-77

setconstraint

Constant used in custom constraints, specified as a column vector with
the same number of rows as E, F, G, and S.

If V is not specified, the default of 1 is applied to all constraint
inequalities and all constraints are soft (default behavior for output
bounds as described in “Standard Form”).

To make the ith constraint hard, specify V(i) = 0.

To make the ith constraint soft, specify V(i)(>)0 in keeping with the
constraint violation magnitude you can tolerate. The magnitude
violation depends on the numerical scale of the variables involved in
the constraint.

In general, as V(i) decreases, the controller decreases the allowed
constraint violation, i.e., the constraint becomes harder.

Note If a constraint is difficult to satisfy, reducing its V(i) value (to
make it harder) may be counter-productive, and can lead to erratic
control action, instability, or failure of the QP solver that determines
the control action.

Default: vector of 1s

S

Constant used in custom constraints, specified as a matrix with:

nv columns, where nv is the number of measured disturbances
Same number of rows as E, F, G and V

Examples This example shows how to specify the custom constraint 0 ≤ u2 – 2u3
+ y2 ≤ 15 on an MPC controller. The controller has three manipulated
variables and two controlled outputs.

The constraint imposes upper and lower bounds on u2 – 2u3 + y2 .

1 Formulate this constraint in the required form:

1-78

setconstraint

0 1 2
0 1 2

0 1
0 1

0
15

1

2

3

1

2

u
u
u

y
y

2 Specify the constraints on the plant inputs and outputs:

E = [0 -1 2; 0 1 -2];
F = [0 -1; 0 1];
G = [0; 15];
setconstraint(MPCobj, E, F, G);

Alternatively, you can use:

E = [0 -1 2; 0 1 -2];
F = [0 -1; 0 1];
G = [0; 15];
V = [1; 1];
S = [];
setconstraint(MPCobj, E, F, G, V, S);

See Also setterminal

Tutorials • MPC Control with Constraints on a Combination of Input and
Output Signals

• MPC Control of a Nonlinear Blending Process

How To • “Custom Constraints on Inputs and Outputs”

1-79

setestim

Purpose Modify MPC object’s linear state estimator

Syntax setestim(MPCobj,M)
setestim(MPCobj,'default')

Description The setestim function modifies the linear estimator gain of an MPC
object. The state estimator is based on the linear model (see “State
Estimation”).

x(k + 1) = Ax(k) + Buu(k) + Bvv(k)

ym(k) = Cmx(k) + Dvmv(k)

where v(k) are the measured disturbances, u(k) are the manipulated
plant inputs, ym(k) are the measured plant outputs, and x(k) is the
overall state vector collecting states of plant, unmeasured disturbance,
and measurement noise models. The order of the states in x is the
following: plant states; disturbance models states; noise model states.

setestim(MPCobj,M), where MPCobj is an MPC object, changes the
default Kalman estimator gain stored in MPCobj to that specified by
matrix M.

setestim(MPCobj,'default') restores the default Kalman gain.

The estimator used in Model Predictive Control Toolbox software is
described in “State Estimation”. The estimator’s equations are as
follows.

Predicted Output Computation:

ˆ ˆ ()y k k C x k k D v km m vm−() = −() +1 1

Measurement Update:

ˆ ˆ () ˆx k k x k k M y k y k km m() = −() + − −()()1 1

1-80

setestim

Time Update:

ˆ ˆ () ()x k k Ax k k B u k B v ku v+() = () + +1

By combining these three equations, the overall state observer is

ˆ ˆ () () ()x k k A LC x k k Ly k B u k B LD v km m u v vm+() = −() −() + + + −()1 1

where L = AM.

Note The estimator gain M has the same meaning as the gain L in the
kalman function in Control System Toolbox software.

Matrices A, Bu, Bv, Cm, Dvm can be retrieved using getestim as follows:

[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj)

Examples Design State Estimator by Pole Placement

Design an estimator using pole placement, assuming the linear system
AM=L is solvable.

Create a plant model.

G = tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]});

To improve the clarity of this example, call mpcverbosity to suppress
messages related to working with an MPC controller.

old_status = mpcverbosity('off');

Create a model predictive controller for the plant. Specify the controller
sample time as 0.2 seconds.

MPCobj = mpc(G, 0.2);

1-81

setestim

Obtain the default state estimator gain.

[M,A1,Cm1] = getestim(MPCobj);

Calculate the default observer poles.

e = eig(A1-A1*M*Cm1);
abs(e)

ans =

0.9402
0.9402
0.8816
0.8816
0.7430
0.9020

Specify faster observer poles.

new_poles = [.8 .75 .7 .85 .6 .81];

Compute a state-gain matrix that places the observer poles at
new_poles.

L = place(A1',Cm1',new_poles)';

place returns the controller-gain matrix, whereas you want to compute
the observer-gain matrix. Using the principle of duality, which relates
controllability to observability, you specify the transpose of A1 and
Cm1 as the inputs to place. This function call yields the observer gain
transpose.

Obtain the estimator gain from the state-gain matrix.

M=A1\L;

1-82

setestim

Specify M as the estimator for MPCobj.

setestim(MPCobj,M);

The pair, (), describing the overall state-space realization of the
combination of plant and disturbance models must be observable for the
state estimation design to succeed. Observability is checked in Model
Predictive Control Toolbox software at two levels: (1) observability of
the plant model is checked at construction of the MPC object, provided
that the model of the plant is given in state-space form; (2) observability
of the overall extended model is checked at initialization of the MPC
object, after all models have been converted to discrete-time, delay-free,
state-space form and combined together.

Restore mpcverbosity.

mpcverbosity(old_status);

See Also getestim | mpc | mpcstate | kalman

1-83

setindist

Purpose Modify unmeasured input disturbance model

Syntax setindist(MPCobj,'integrators')
setindist(MPCobj,'model',model)

Description setindist(MPCobj,'integrators') imposes the default disturbance
model for unmeasured inputs, that is, for each unmeasured input
disturbance channel, an integrator is added unless there is a violation
of observability, otherwise the input is treated as white noise with unit
variance (this is equivalent to MPCobj.Model.Disturbance=[]).

setindist(MPCobj,'model',model) sets the input disturbance model
to model (this is equivalent to MPCobj.Model.Disturbance=model).

See Also mpc | getindist | setestim | getestim | setoutdist

1-84

setmpcdata

Purpose Set private MPC data structure

Note setmpcdata will be removed in a future version. Use set,
setconstraint, setestim, setindist andsetoutdist instead.

Syntax setmpcdata(MPCobj,mpcdata)

Description setmpcdata(MPCobj,mpcdata) changes the private field MPCData of the
MPC object MPCobj, where all internal QP matrices, models, estimator
gains are stored at initalization of the object. You may only need this
for very advanced use of Model Predictive Control Toolbox software.

Note Changes to the data structure may easily lead to unpredictable
results.

See Also getmpcdata | set | get | pack

1-85

setmpcsignals

Purpose Set signal types in MPC plant model

Syntax P=setmpcsignals(P,SignalType1,Channels1,SignalType2,Channels2,...)

Description The purpose of setmpcsignals is to set I/O channels of the MPC
plant model P. P must be an LTI object. Valid signal types, their
abbreviations, and the channel type they refer to are listed below.

Signal Type Abbreviation Channel

Manipulated MV Input

MeasuredDisturbances MD Input

UnmeasuredDisturbances UD Input

MeasuredOutputs MO Output

UnmeasuredOutputs UO Output

Unambiguous abbreviations of signal types are also accepted.

P=setmpcsignals(P) sets channel assignments to default, namely all
inputs are manipulated variables (MVs), all outputs are measured
outputs (MOs). More generally, input signals that are not explicitly
assigned are assumed to be MVs, while unassigned output signals are
considered as MOs.

Examples We want to define an MPC object based on the LTI discrete-time plant
model sys with four inputs and three outputs. The first and second
input are measured disturbances, the third input is an unmeasured
disturbance, the fourth input is a manipulated variable (default), the
second output is an unmeasured, all other outputs are measured.

sys=setmpcsignals(sys,'MD',[1 2],'UD',[3],'UO',[2]);
mpc1=mpc(sys);

1-86

setmpcsignals

Note When using setmpcsignals to modify an existing MPC object,
be sure that the fields Weights, MV, OV, DV, Model.Noise, and
Model.Disturbance are consistent with the new I/O signal types.

See Also mpc | set

1-87

setname

Purpose Set I/O signal names in MPC prediction model

Syntax setname(MPCobj,'input',I,name)
setname(MPCobj,'output',I,name)

Description setname(MPCobj,'input',I,name) changes the name
of the I-th input signal to name. This is equivalent to
MPCobj.Model.Plant.InputName{I}=name. Note that setname also
updates the read-only Name fields of MPCobj.DisturbanceVariables
and MPCobj.ManipulatedVariables.

setname(MPCobj,'output',I,name) changes the name
of the I-th output signal to name. This is equivalent to
MPCobj.Model.Plant.OutputName{I} =name. Note that setname also
updates the read-only Name field of MPCobj.OutputVariables.

Note The Name properties of ManipulatedVariables,
OutputVariables, and DisturbanceVariables are read-only. You
must use setname to assign signal names, or equivalently modify the
Model.Plant.InputName and Model.Plant.OutputName properties
of the MPC object.

See Also getname | mpc | set

1-88

setoutdist

Purpose Modify unmeasured output disturbance model

Syntax setoutdist(MPCobj,'integrators')
setoutdist(MPCobj,'remove',channels)
setoutdist(MPCobj,'model',model)

Description setoutdist(MPCobj,'integrators') specifies the default
method output disturbance model, based on the specs
stored in MPCobj.OutputVariables.Integrator and
MPCobj.Weights.OutputVariables. Output integrators are added
according to the following rules:

1 Outputs are ordered by decreasing output weight (in case of
time-varying weights, the sum of the absolute values over time is
considered for each output channel. In case of equal output weight,
the order within the output vector is followed).

2 By following such order, an output integrator is added per measured
outputs, unless one of the following is true:

• There is a violation of observability

• The corresponding value in MPCobj.OutputVariables.Integrator
is zero

• The corresponding value in MPCobj.Weights.OutputVariables
is zero.

A warning is issued when an integrator is added to an unmeasured
output channel.

setoutdist(MPCobj,'remove',channels) removes integrators from
the output channels specified in vector channels. This corresponds
to setting MPCobj.OutputVariables(channels).Integrator=0. The
default for channels is (1:ny), where ny is the total number of outputs,
that is, all output integrators are removed.

setoutdist(MPCobj,'model',model) replaces the array
of output integrators designed by default according to

1-89

setoutdist

MPCobj.OutputVariables.Integrator with the LTI
model model. The model must have ny outputs. If no
model is specified, then the default model based on the
specs stored in MPCobj.OutputVariables.Integrator
and MPCobj.Weights.OutputVariables is used (same as
setoutdist(MPCobj, 'integrators').

See Also mpc | getestim | setestim | setoutdist | setindist

1-90

setterminal

Purpose Terminal weights and constraints

Syntax setterminal(MPCobj,Y,U)
setterminal(MPCobj,Y,U,Pt)

Description setterminal(MPCobj,Y,U) specifies diagonal quadratic penalty
weights and constraints at the last step in the prediction horizon. The
weights and constraints are on the terminal output y(t+p) and terminal
input u(t+p – 1), where p is the prediction horizon of the MPC controller
MPCobj.

setterminal(MPCobj,Y,U,Pt) specifies diagonal quadratic penalty
weights and constraints from step Pt to the horizon end. By default,
Pt is the last step in the horizon.

Tips • Advanced users can impose terminal polyhedral state constraints:

K1 ≤ Hx ≤ K2.

First, augment the plant model with additional artificial
(unmeasured) outputs, y = Hx. Then specify bounds K1 and K2 on
these y outputs.

Input
Arguments

MPCobj

MPC controller, specified as an MPC controller object

Y

Terminal weights and constraints for the output variables, specified as
a structure with the following fields:

Weight 1-by-ny vector of nonnegative weights

Min 1-by-ny vector of lower bounds

Max 1-by-ny vector of upper bounds

1-91

setterminal

MinECR 1-by-ny vector of constraint-softening Equal Concern for
the Relaxation (ECR) values for the lower bounds

MaxECR 1-by-ny vector of constraint-softening ECR values for the
upper bounds

ny is the number of controlled outputs of the MPC controller.

If the Weight, Min or Max field is empty, the values in MPCobj are
used at all prediction horizon steps including the last. For the
standard bounds, if any element of the Min or Max field is infinite, the
corresponding variable is unconstrained at the terminal step.

Off-diagonal weights are zero (as in Equation 2-3 of “Standard Form”).
To apply non-zero off-diagonal terminal weights, you must augment
the plant model. See Implementing Infinite-Horizon LQR by Setting
Terminal Weights in a Finite-Horizon MPC Formulation.

By default, Y.MinECR = Y.MaxECR = 1 (soft output constraints).

Choose the ECR magnitudes carefully, accounting for the importance of
each constraint and the numerical magnitude of a typical violation.

U

Terminal weights and constraints for the manipulated variables,
specified as a structure with the following fields:

Weight 1-by-nu vector of nonnegative weights

Min 1-by-nu vector of lower bounds

Max 1-by-nu vector of upper bounds

MinECR 1-by-nu vector of constraint-softening Equal Concern for
the Relaxation (ECR) values for the lower bounds

MaxECR 1-by-nu vector of constraint-softening ECR values for
the upper bounds

nu is the number of manipulated variables of the MPC controller.

1-92

setterminal

If the Weight, Min or Max field is empty, the values in MPCobj are used
at all prediction horizon steps including the last. For the standard
bounds, if individual elements of the Min or Max fields are infinite, the
corresponding variable is unconstrained at the terminal step.

Off-diagonal weights are zero (as in Equation 2-3 of “Standard Form”).
To apply non-zero off-diagonal terminal weights, you must augment
the plant model. See Implementing Infinite-Horizon LQR by Setting
Terminal Weights in a Finite-Horizon MPC Formulation.

By default, U.MinECR = U.MaxECR = 0 (hard manipulated variable
constraints)

Choose the ECR magnitudes carefully, accounting for the importance of
each constraint and the numerical magnitude of a typical violation.

Pt

Step in the prediction horizon, specified as an integer between 1 and
p, where p is the prediction horizon. The terminal values are applied
to Y and U from prediction step Pt to the end.

Default: Prediction horizon p

Examples This example shows how to specify constraints and a penalty weight
at the last step of the prediction horizon of an MPC controller. The
controller has three output variables and two manipulated variables.

1 Specify a prediction horizon of 8.

MPCobj.PredictionHorizon = 8;

2 Define a penalty weight and constraints:

Y=struct('Weight',[1,10,0],'Min',[0,-Inf,-1],...
'Max',[Inf,2,Inf]);

U=struct('Min',[1,-Inf]);

The constraints and weights include:

1-93

setterminal

• Diagonal penalty weights of 1 and 10 on the first two output
variables

• Lower bounds of 0 and –1 on outputs 1 and 3, none on output 2

• Upper bound at 2 on output 2, none on outputs 1 and 3

• Lower bound at 1 on manipulated variable 1

• No other conditions (weights or bounds) on the manipulated
variables

3 Specify the constraints and weight at the last step (step 8) of the
prediction horizon:

setterminal(MPCobj,Y,U);

This example shows how to specify constraints and a penalty weight
beginning with step 5 and ending at the last step of the prediction
horizon of an MPC controller, The controller has three output variables
and two manipulated variables.

1 Specify a prediction horizon of 8.

MPCobj.PredictionHorizon = 8;

2 Define a penalty weight and constraints:

Y=struct('Weight',[1,10,0],'Min',[0,-Inf,-1],...
'Max',[Inf,2,Inf]);

U=struct('Min',[1,-Inf]);

The constraints and weights include:

• Diagonal penalty weights of 1 and 10 on the first two output
variables

• Lower bounds of 0 and –1 on outputs 1 and 3, none on output 2

• Upper bound at 2 on output 2, none on outputs 1 and 3

1-94

setterminal

• Lower bound at 1 on manipulated variable 1

• No other conditions (weights or bounds) on the manipulated
variables

3 Specify the constraints and weight beginning with step 5 and ending
at the last step of the prediction horizon:

setterminal(MPCobj,Y,U,5);

See Also | mpc | mpcprops | setconstraint

Tutorials • “Providing LQR Performance Using Terminal Penalty”

• Implementing Infinite-Horizon LQR by Setting Terminal Weights in
a Finite-Horizon MPC Formulation

How To • “Terminal Weights and Constraints”

1-95

sim

Purpose Simulate closed-loop/open-loop response to arbitrary reference and
disturbance signals

Syntax sim(MPCobj,T,r)
sim(MPCobj,T,r,v)
sim(MPCobj,T,r,SimOptions)
sim(MPCobj,T,r,v,SimOptions)
[y,t,u,xp,xmpc,SimOptions] = sim(MPCobj,T,...)

Description The purpose of sim is to simulate the MPC controller in closed loop with
a linear time-invariant model, which, by default, is the plant model
contained in MPCobj.Model.Plant. As an alternative, sim can simulate
the open-loop behavior of the model of the plant, or the closed-loop
behavior in the presence of a model mismatch between the prediction
plant model and the model of the process generating the output data.

sim(MPCobj,T,r) simulates the closed-loop system formed by the plant
model specified in MPCobj.Model.Plant and by the MPC controller
specified by the MPC object MPCobj, and plots the simulation results. T
is the number of simulation steps. r is the reference signal array with
as many columns as the number of output variables.

sim(MPCobj,T,r,v) also specifies the measured disturbance signal v,
that has as many columns as the number of measured disturbances.

Note The last sample of r/v is extended constantly over the simulation
horizon, to obtain the correct size.

sim(MPCobj,T,r,SimOptions) specifies the simulation options object
SimOptions, such as initial states, input/output noise and unmeasured
disturbances, plant mismatch, etc. See mpcsimopt for details.

sim(MPCobj,T,r,v,SimOptions) additionally specifies the measured
disturbance signal, v.

Without output arguments, sim automatically plots input and output
trajectories.

1-96

sim

[y,t,u,xp,xmpc,SimOptions] = sim(MPCobj,T,...) instead of
plotting closed-loop trajectories returns the sequence of plant outputs y,
the time sequence t (equally spaced by MPCobj.Ts), the sequence u of
manipulated variables generated by the MPC controller, the sequence
xp of states of the model of the plant used for simulation, the sequence
xmpc of states of the MPC controller (provided by the state observer),
and the options object SimOptions used for the simulation.

The descriptions of the input arguments and their default values are
shown in the table below.

Input
Argument Description Default

MPCobj MPC object specifying the
parameters of the MPC
control law

None

T Number of simulation
steps

Largest row-size of
r,v,d,n

r Reference signal MPCobj.Model.Nominal.Y

v Measured disturbance
signal

Entries from
MPCobj.Model.Nominal.U

SimOptions Object of class @mpcsimopt
containing the simulation
parameters (See
mpcsimopt)

[]

r is an array with as many columns as outputs, v is an array with as
many columns as measured disturbances. The last sample of r/v/d/n is
extended constantly over the horizon, to obtain the correct size.

The output arguments of sim are detailed below.

1-97

sim

Output
Argument Description

y Sequence of controlled plant outputs (without noise
added on measured ones)

t Time sequence (equally spaced by MPCobj.Ts)

u Sequence of manipulated variables generated by MPC

xp Sequence of states of plant model (from Model or
SimOptions.Model)

xmpc Sequence of states of MPC controller (estimates of the
extended state). This is a structure with the same
fields as the mpcstate object.

Examples Simulate MPC Control of MISO Plant

Simulate the MPC control of a MISO system. The system has one
manipulated variable, one measured disturbance, one unmeasured
disturbance, and one output.

Create the continuous-time plant model. This plant will be used as the
prediction model for the MPC controller.

sys = ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));

Discretize the plant model using a sampling time of 0.2 units.

Ts = 0.2;
sysd = c2d(sys,Ts);

Specify the MPC signal type for the plant input signals.

sysd = setmpcsignals(sysd,'MV',1,'MD',2,'UD',3);

Create an MPC controller for the sysd plant model. Use default values
for the weights and horizons.

1-98

sim

MPCobj = mpc(sysd);

-->The "PredictionHorizon" property of "mpc" object is empty. Trying P
-->The "ControlHorizon" property of the "mpc" object is empty. Assumin
-->The "Weights.ManipulatedVariables" property of "mpc" object is empt
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is
-->The "Weights.OutputVariables" property of "mpc" object is empty. As

Constrain the manipulated variable to the [0 1] range.

MPCobj.MV = struct('Min',0,'Max',1);

Specify the simulation stop time.

Tstop = 30;

Define the reference signal and the measured disturbance signal.

num_sim_steps = round(Tstop/Ts);
r = ones(num_sim_steps,1);
v = [zeros(num_sim_steps/3,1); ones(2*num_sim_steps/3,1)];

The reference signal, r, is a unit step. The measured disturbance signal,
v, is a unit step, with a 10 unit delay.

Simulate the controller.

sim(MPCobj,num_sim_steps,r,v);

-->The "Model.Disturbance" property of "mpc" object is empty:
Assuming unmeasured input disturbance #3 is integrated white noise.

-->The "Model.Noise" property of the "mpc" object is empty. Assuming w

1-99

sim

1-100

sim

See Also mpcsimopt | mpc | mpcmove

1-101

size

Purpose Size and order of MPC Controller

Syntax mpc_obj_size = size(MPCobj)
mpc_obj_size = size(MPCobj,signal_type)
size(MPCobj)

Description mpc_obj_size = size(MPCobj) returns a row vector specifying the
number of manipulated inputs and measured controlled outputs of
an MPC controller. This row vector contains the elements [nu nym],
where nu is the number of manipulated inputs and nym is the number
of measured controlled outputs.

mpc_obj_size = size(MPCobj,signal_type) returns the number of
signals of the specified type that are associated with the MPC controller.

You can specify signal_type as one of the following strings:

• 'uo' — Unmeasured controlled outputs

• 'md' — Measured disturbances

• 'ud' — Unmeasured disturbances

• 'mv' — Manipulated variables

• 'mo' — Measured controlled outputs

size(MPCobj) displays the size information for all the signal types of
the MPC controller.

See Also mpc | set

1-102

ss

Purpose Convert unconstrained MPC controller to state-space linear system

Syntax sys=ss(MPCobj)
sys = ss(MPCobj,signals)
sys = ss(MPCobj,signals,ref_preview,md_preview)
[sys,ut] = ss(MPCobj)

Description The ss command returns a linear controller in the state-space form.
The controller is equivalent to the MPC controller MPCobj when the
constraints are not active. The purpose is to use the linear equivalent
control in Control System Toolbox software for sensitivity analysis and
other linear analysis.

sys=ss(MPCobj) returns the linear discrete-time dynamic controller sys

x(k + 1) = Ax(k) + Bym(k)

u(k) = Cx(k) + Dym(k)

where ym is the vector of measured outputs of the plant, and u is the
vector of manipulated variables. The sampling time of controller sys is
MPCobj.Ts.

Note Vector x includes the states of the observer
(plant+disturbance+noise model states) and the previous
manipulated variable u(k-1).

sys = ss(MPCobj,signals) returns the linearized MPC controller
in its full form and allows you to specify the signals that you want to
include as inputs for sys.

The full form of the MPC controller has the following structure:

x(k + 1) = Ax(k) + Bym(k) + Brr(k) + Bvv(k) + Bututarget(k) + Boff

u(k) = Cx(k) + Dym(k) + Drr(k) + Dvv(k) + Dututarget(k) + Doff

1-103

ss

Here, r is the vector of setpoints for both measured and unmeasured
plant outputs, v is the vector of measured disturbances, utarget is the
vector of preferred values for manipulated variables.

Specify signals as a single or multicharacter string constructed using
any of the following:

• 'r' — Output references

• 'v' — Measured disturbances

• 'o' — Offset terms

• 't' — Input targets

For example, to obtain a controller that maps [ym; r; v] to u, use:

sys = ss(MPCobj,'rv');

In the general case of nonzero offsets, ym (as well as r, v,
and utarget) must be interpreted as the difference between the
vector and the corresponding offset. Offsets can be nonzero is
MPCobj.Model.Nominal.Y or MPCobj.Model.Nominal.U are nonzero.

Vectors Boff, Doff are constant terms. They are nonzero if and only if
MPCobj.Model.Nominal.DX is nonzero (continuous-time prediction
models), or MPCobj.Model.Nominal.Dx-MPCobj.Model.Nominal.X
is nonzero (discrete-time prediction models). In other words, when
Nominal.X represents an equilibrium state, Boff, Doff are zero.

Only the following fields of MPCobj are used when computing the
state-space model: Model, PredictionHorizon, ControlHorizon, Ts,
Weights.

sys = ss(MPCobj,signals,ref_preview,md_preview) specifies if the
MPC controller has preview actions on the reference and measured
disturbance signals. If the flag ref_preview='on', then matrices Br
and Dr multiply the whole reference sequence:

x(k + 1) = Ax(k) + Bym(k) + Br[r(k);r(k + 1);...;r(k + p – 1)] +...

u(k) = Cx(k) + Dym(k) + Dr[r(k);r(k + 1);...;r(k + p– 1)] +...

1-104

ss

Similarly if the flag md_preview='on', then matrices Bv and Dv
multiply the whole measured disturbance sequence:

x(k + 1) = Ax(k) +...+ Bv[v(k);v(k + 1);...;v(k + p)] +...

u(k) = Cx(k) +...+ Dv[v(k);v(k + 1);...;v(k + p)] +...

[sys,ut] = ss(MPCobj) additionally returns the input target values
for the full form of the controller.

ut is returned as a vector of doubles, [utarget(k); utarget(k+1);
... utarget(k+h)].

Here:

• h — Maximum length of previewed inputs, that is, h =
max(length(MPCobj.ManipulatedVariables(:).Target)

• utarget — Difference between the input target and corresponding
input offsets, that is, MPCobj.ManipulatedVariables(:).Targets -
MPCobj.Model.Nominal.U

Examples Convert Unconstrained MPC Controller to State-Space Model

To improve the clarity of the example, suppress messages about
working with an MPC controller.

old_status = mpcverbosity('off');

Create the plant model.

G = rss(5,2,3);
G.D = 0;
G = setmpcsignals(G,'mv',1,'md',2,'ud',3,'mo',1,'uo',2);

Configure the MPC controller with nonzero nominal values, weights,
and input targets.

C = mpc(G,0.1);
C.Model.Nominal.U = [0.7 0.8 0];
C.Model.Nominal.Y = [0.5 0.6];

1-105

ss

C.Model.Nominal.DX = rand(5,1);
C.Weights.MV = 2;
C.Weights.OV = [3 4];
C.MV.Target = [0.1 0.2 0.3];

C is an unconstrained MPC controller. Specifying C.Model.Nominal.DX
as nonzero means that the nominal values are not at steady state.
C.MV.Target specifies three preview steps.

Covert C to a state-space model.

sys = ss(C);

The output, sys, is a seventh-order SISO state-space model. The seven
states include the five plant model states, one state from the default
input disturbance model, and one state from the previous move, u(k-1).

Restore mpcverbosity.

mpcverbosity(old_status);

See Also mpc | set | tf | zpk

1-106

tf

Purpose Convert unconstrained MPC controller to linear transfer function

Syntax sys=tf(MPCobj)

Description The tf function computes the transfer function of the linear controller
ss(MPCobj) as an LTI system in tf form corresponding to the MPC
controller when the constraints are not active. The purpose is to use
the linear equivalent control in Control System Toolbox software for
sensitivity and other linear analysis.

See Also ss | zpk

1-107

trim

Purpose Compute steady-state value of MPC controller state for given inputs
and outputs

Syntax x = trim(MPCobj,y,u)

Description The trim function finds a steady-state value for the plant state or the
best approximation in a least squares sentence such that:

x x A x x B u u

y y C x x D u u
off off off

off off off

() ()

() ()

Here, xoff, uoff, and yoff are the nominal values of the extended state
x, input u, and output y.

x is returned as an mpcstate object. Specify y and u as doubles. y
specifies the measured and unmeasured output values. u specifies
the manipulated variable, measured disturbance, and unmeasured
disturbance values. The values for unmeasured disturbances must be 0.

trim assumes the disturbance model and measurement noise model to
be zero when computing the steady-state value. The software uses the
extended state vector to perform the calculation.

See Also mpc | mpcstate

1-108

zpk

Purpose Convert unconstrained MPC controller to zero/pole/gain form

Syntax sys=zpk(MPCobj)

Description The zpk function computes the zero-pole-gain form of the linear
controller ss(MPCobj) as an LTI system in zpk form corresponding to
the MPC controller when the constraints are not active. The purpose is
to use the linear equivalent control in Control System Toolbox software
for sensitivity and other linear analysis.

See Also ss | tf

1-109

zpk

1-110

2

Block Reference

MPC Controller

Purpose Compute MPC control law

Library MPC Simulink Library

Description The MPC Controller block receives the current measured output signal
(mo), reference signal (ref), and optional measured disturbance signal
(md). The block computes the optimal manipulated variables (mv) by
solving a quadratic program (QP).

To use the block in simulation and code generation, you must specify an
mpc object, which defines a model predictive controller. This controller
must have already been designed for the plant that it will control.

Because the MPC Controller block uses MATLAB Function blocks to
implement the QP solver, it requires compilation each time you change
the MPC object and block. Also, because MATLAB does not allow
compiled code to reside in any MATLAB product folder, you must use
a non-MATLAB folder to work on your Simulink model when you use
MPC blocks.

2-2

MPC Controller

Dialog
Box The MPC Controller block has the following parameter groupings:

• “Parameters” on page 2-4

• “Required Inports” on page 2-5

• “Required Outports” on page 2-6

• “Optional Inports” on page 2-6

• “Optional Outports” on page 2-10

• “Online Tuning Inports” on page 2-12

2-3

MPC Controller

• “Signal Attributes and Block Sample Time” on page 2-14

Parameters
MPC controller
You must provide an mpc object that defines your controller using one
of the following methods:

• Enter the name of an mpc object in the MPC Controller edit box.
This object must be present in the base workspace.

Clicking Design opens the MPC design tool where you can modify the
controller settings in a graphical environment. For example, you can:

- Import a new prediction model.

- Change horizons, constraints, and weights.

- Evaluate MPC performance with a linear plant.

- Export the updated controller to the base workspace.

To see how well the controller works for the nonlinear plant, run a
closed-loop Simulink simulation.

• If you do not have an existing mpc object in the base workspace, leave
theMPC controller field empty and, with the MPC Controller block
connected to the plant, click Design. This action constructs a default
mpc controller by obtaining a linearized model from the Simulink
diagram at the default operating point. Continue your controller
design in the MPC design tool.

To use this design approach, you must have Simulink Control
Design™ software.

Initial controller state
Specifies the initial controller state. If this parameter is left blank, the
block uses the nominal values that are defined in the Model.Nominal
property of the mpc object. To override the default, create an mpcstate
object in your workspace that represents the initial state, and enter
its name in the field.

2-4

MPC Controller

Required Inports

Measured output
At each control instant, the mo signal must contain the current
output variable measurements. Let nym be the number of
measured output variables (MO) defined in your predictive
controller. If nym=1, connect a scalar signal to the mo inport.
Otherwise, connect a row or column vector signal containing nym
real, double-precision elements.

Reference
At each control instant, the ref signal must contain the current
reference values (targets or setpoints) for the ny output variables
(ny = nym+ number of unmeasured outputs). You have the
option to specify future reference values (previewing).

The ref signal must be size N by ny, where N N p()1 is the
number of time steps for which you are specifying reference values
and p is the prediction horizon. Each element must be a real
double-precision number. The ref dimension must not change
from one control instant to the next.

When N=1, you cannot preview. To specify future reference

values, choose N such that 1 N p to enable previewing. Doing
so usually improves performance via feedforward information.
The first row specifies the ny references for the first step in the
prediction horizon (at the next control interval k=1), and so on for
N steps. If N<p, the last row designates constant reference values
to be used for the remaining p-N steps.

For example, suppose ny=2 and p=6. At a given control instant,
the signal connected to the controller’s ref inport is

[2 5 k=1
2 6 k=2
2 7 k=3
2 8] k=4

2-5

MPC Controller

The signal informs the controller that:

• Reference values for the first prediction horizon step (k=1)
are 2 and 5.

• The first reference value remains at 2, but the second increases
gradually.

• The second reference value becomes 8 at the beginning of the
fourth step (k=4) in the prediction horizon.

• Both values remain constant at 2 and 8 respectively for steps
5–6 of the prediction horizon.

mpcpreview shows how to use reference previewing in a specific
case. For calculation details on the use of the reference signal, see
“Optimization Problem”.

Required Outports
Manipulated Variables

The mv outport provides a signal defining the nu 1 manipulated
variables, which are to be implemented in the plant. The controller
updates its mv outport by solving a quadratic program at each control
instant. The elements are real, double-precision values.

Optional Inports
Measured disturbance
Add an inport (md) to which you can connect a measured disturbance
signal.

Your measured disturbance signal (MD) must be size Nxnmd, where

nmd() 1 is the number of measured disturbances defined in your

Model Predictive Controller and N (1 N p+1) is the number of
time steps for which the MD is known. Each element must be a real,
double-precision number. The signal dimensions must not change from
one control instant to the next.

2-6

MPC Controller

If N=1 you cannot preview. At each control instant, the MD signal must
contain the most recent measurements at the current time k=0 (as a row
vector, length nmd). The controller assumes that the MDs remain constant
at their current values for the entire prediction horizon.

If you are able to predict future MD values, choose N such that1<N p+1
to enable previewing. Doing so usually improves performance via
feedforward. In this case, the first row must contain the nmd current
values at k=0, and the remaining rows designate variations over the
next N-1 control instants. If N<p+1, the last row designates constant
MD values to be used for the remaining p+1-N steps of the prediction
horizon.

For example suppose nmd=2 and p=6. At a given control instant, the
signal connected to the controller’s md inport is:

[2 5 k=0
2 6 k=1
2 7 k=2
2 8] k=3

This signal informs the controller that:

• The current MDs are 2 and 5 at k=0.

• The first MD remains at 2, but the second increases gradually.

• The second MD becomes 8 at the beginning of the step 3 (k=3) in the
prediction horizon.

• Both values remain constant at 2 and 8 respectively for steps 4–6
of the prediction horizon.

mpcpreview shows how to use MD previewing in a specific case.

For calculation details, see “Prediction Model” and “QP Matrices”.

Externally supplied MV signals
Add an inport (ext.mv), which you can connect to the actual
manipulated variables (MV) used in the plant. The block uses these to

2-7

MPC Controller

update its internal state estimates. For example, suppose the actual
signals saturate at physical limits or the MV is under manual control. In
both cases, feeding the actual value back to the MPC Controller block
can improve performance significantly, because the prediction model’s
state estimates are updated more accurately.

The following example shows how a manual switch may override the
controller’s output. Also see Turning Controller Online and Offline
with Bumpless Transfer.

Do not connect this option to leave the ext.mv inport unconnected. In
either case, the model predictive controller assumes that the plant uses
the MV signals sent by the MPC Controller block. In the preceding
example, the external MV signal always provides the model predictive
controller that the control signal actually used in the plant. Otherwise,
the model predictive controller’s internal state estimate would be
inaccurate.

Note The MPC Controller block is a discrete-time block with sampling
time inherited from the MPC object. The MPC block has direct
feedthrough from measured outputs (mo), output references (ref), and
measured disturbances (md) to MPC-manipulated variables (mv). There
is no direct feedthrough from externally supplied manipulated variables
(ext.mv) to MPC-manipulated variables (mv).

2-8

MPC Controller

Input and output limits
Add inports (umin,umax,ymin,ymax), which you can connect to run-time
constraint signals. If this check box is not selected, the block uses
the constant constraint values stored within its mpc object. Example
connections appear in the following model. See Varying Input and
Output Constraints for an example of using this option.

Each unconnected limit inport, such as ymin in the following model, is
treated as an unbounded signal. The corresponding constraint settings
in the mpc object must also be unbounded. For connected limit inports,
such as ymax, the signals must be finite and the corresponding variables
in the mpc object must also be bounded.

All constraint signals connected to the block must be finite. Also, you
cannot change the number or identity of constrained and unconstrained
variables. For example, if your mpc object specifies that your first MV
has a lower bound, you must supply a umin signal for it.

Optimization enabling switch
Add an inport (QP Switch) whose input specifies whether the controller
performs optimization calculations. If the input signal is zero, the

2-9

MPC Controller

controller behaves normally. If the input signal becomes nonzero, the
MPC Controller block turns off the controller’s optimization calculations
and sets the controller output to zero. These actions save computational
effort when the controller output is not needed, such as when the system
has been placed in manual operation or another controller has taken
over. The controller, however, continues to update its internal state
estimate in the usual way. Thus, it is ready to resume optimization
calculations whenever the QP Switch signal returns to zero.

If you select this option, the mask automatically selects the Externally
supplied MV signal option. Connect this option to the current MV
value in the plant. Otherwise, there would be a "bump" each time the
QP Switch signal reactivates optimization.

Optional Outports
Optimal cost
Add an outport (cost) that provides the calculated optimal cost (scalar)
of the quadratic program during operation. The computed value is an
indication of controller performance. If the controller is performing well,
the value is low. However, if the optimization problem is infeasible, this
value is meaningless. (See qp.status.)

Optimal control sequence
Add an outport (mv.seq) that provides the controller’s computed optimal
MV sequence for the entire prediction horizon from k=0 to k=p-1. If nu is
the number of MVs and p is the length of the prediction horizon, this
signal is a p by nu matrix. The first row represents k=0 and duplicates
the block’s MV outport.

The following block diagram (from Analysis of Control Sequences
Optimized by MPC on a Double Integrator System) illustrates how to
use this option. The diagram shows how to collect diagnostic data and
send it to the To Workspace2 block, which creates the variable, useq,
in the workspace. Run the example to see how the optimal sequence
evolves with time.

2-10

MPC Controller

Optimization status
Add an outport (qp.status) that allows you to monitor the status of
the QP solver.

If a QP problem is solved successfully at a given control interval, the
qp.status output returns the number of QP solver iterations used in
computation. This value is a finite, positive integer and is proportional
to the time required for the calculations. Thus, a large value means a
relatively slow block execution at this time interval.

The QP solver may fail to find an optimal solution for the following
reasons:

• qp.status = 0 — The QP solver cannot find a solution within the
maximum number of iterations specified in the mpc object.

• qp.status = -1— The QP solver detects an infeasible QP problem.
See Monitoring Optimization Status to Detect Controller Failures
for an example where a large, sustained disturbance drives the OV
outside its specified bounds.

• qp.status = -2 — The QP solver has encountered numerical
difficulties in solving a severely ill-conditioned QP problem.

For all the previous three failure modes, the MPC block holds its mv
output at the most recent successful solution. In a real-time application,
you can use status indicator to set an alarm or take other special action.

2-11

MPC Controller

The next diagram shows how to use the status indicator to monitor the
MPC Controller block in real time. See Monitoring Optimization Status
to Detect Controller Failures for more details.

Online Tuning Inports

A controller intended for real-time applications should have “knobs” you
can use to tune its performance when it operates with the real plant.
This group of optional inports serves that purpose.

The diagram shown below displays the MPC Controller block’s three
tuning knobs. In this simulation context, the knobs are being tuned by
prestored signals (the ywt, duwt, and ECRwt variables in the From
Workspace blocks). In practice, you would connect a knob or similar
manual adjustment.

2-12

MPC Controller

Weights on plant outputs
Add an inport (y.wt) whose input is a vector signal defining a
nonnegative weight for each controlled output variable (OV). This
signal overrides the MPCobj.Weights.OV property, which establishes
the relative importance of OV reference tracking.

For example, if the preceding controller defined 3 OVs, the signal
connected to the y.wt inport should be a vector with 3 elements. If
the second element is relatively large, the controller would place a
relatively high priority on making OV(2) track the r(2) reference signal.
Setting a y.wt signal to zero turns off reference tracking for that OV.

If you do not connect a signal to the y.wt inport, the block uses the OV
weights specified in your MPC object, and these values remain constant.

Weights on manipulated variables rate
Add an inport (du.wt), whose input is a vector signal defining nu
nonnegative weights, where nu is the number of manipulated variables
(MVs). The input overrides the MPCobj.Weights.MVrate property
stored in the mpc object.

For example, if your controller defines four MVs and the second du.wt
element is relatively large, the controller would use relatively small

2-13

MPC Controller

changes in the second MV. Such move suppression makes the controller
less aggressive. However, too much suppression makes it sluggish.

If you do not connect a signal to the du.wt inport, the block uses the
MVrate weights property specified in your mpc object, and these values
remain constant.

Weight on overall constraint softening
Add an inport (ECR.wt), whose input is a scalar nonnegative signal that
overrides the MPC Controller block’s MPCobj.Weights.ECR property.
This inport has no effect unless your controller object defines soft
constraints whose associated ECR values are nonzero.

If there are soft constraints, increasing the ECR.wt value makes these
constraints relatively harder. The controller then places a higher
priority on minimizing the magnitude of the predicted worst-case
constraint violation.

You may not be able to avoid violations of an output variable constraint.
Thus, increasing the ECR.wt value is often counterproductive. Such
an increase causes the controller to pay less attention to its other
objectives and does not help reduce constraint violations. You usually
need to tune ECR.wt to achieve the proper balance in relation to the
other control objectives.

Signal Attributes and Block Sample Time
Output data type
Specify the data type of the manipulated variables (MV) as one of the
following:

• double— Double-precision floating point (default).

• single — Single-precision floating point.

You specify the output data type as single if you are implementing
the model predictive controller on a single-precision target.

For an example of double- and single-precision simulation and code
generation for an MPC controller, see “Simulation and Code Generation
Using Simulink Coder”.

2-14

MPC Controller

To view the port data types in a model, in the Simulink Editor, select
Display > Signals & PortsPort Data Types. For more information,
see “Display Port Data Types”.

Block uses inherited sample time (-1)
Use the sample time inherited from the parent subsystem as the MPC
Controller block’s sample time.

Inheriting the sample time allows you to conditionally execute the
MPC Controller block inside the Function-Call Subsystem or Triggered
Subsystem blocks. For an example, see Using MPC Controller Block
Inside Function-Call and Triggered Subsystems.

Note When you place an MPC controller inside a Function-Call
Subsystem or Triggered Subsystem block, you must execute the
subsystem at the controller’s design sample rate. You may see
unexpected results if you use an alternate sample rate.

To view the sample time of a block, in the Simulink Editor, select
Display > Sample Time. Select Colors, Annotations, or All. For
more information, see “View Sample Time Information”.

See Also mpc | mpcstate | Multiple MPC Controllers

Related
Examples

• MPC Control with Input Quantization Based on Comparing the
Optimal Costs
• Analysis of Control Sequences Optimized by MPC on a Double
Integrator System
• “Simulation and Code Generation Using Simulink Coder”
• “Simulation and Structured Text Generation Using PLC Coder”

2-15

../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html

Multiple MPC Controllers

Purpose Simulate switching between multiple MPC controllers

Library MPC Simulink Library

Description The Multiple MPC Controllers block receives the current measured
output, reference signal, and measured disturbance signal. It then
solves a quadratic program to calculate the optimal manipulated
variables. It also receives a switching signal that designates which one
of two or more controllers is to perform the calculation (i.e., the active
controller). The block contains these controllers as MPC objects, each of
which is designed for a particular operating region of a nonlinear plant.

The Multiple MPC Controllers block allows you to achieve better control
of a nonlinear plant over a range of operating conditions. A controller
that works well initially can degrade if the plant is nonlinear and its
operating point changes. In conventional feedback control, you might
compensate for this degradation by gain scheduling. In a similar
manner, the Multiple MPC Controllers block allows you to transition
between multiple MPC controllers in real time in a preordained
manner. You design each controller to work well in a particular region
of the operating space. When the plant moves away from this region,
you instruct another MPC controller to take over.

The Multiple MPC Controllers block does not provide all the optional
features found in the MPC Controller block. The following ports are
currently not available:

• Optional outports such as optimal cost, optimal control sequence,
and optimization status

• Optional inports for online tuning

2-16

Multiple MPC Controllers

Dialog
Box The MPC Controller block has the following parameter groupings:

• “Parameters” on page 2-18

• “Required Inports” on page 2-19

• “Required Outports” on page 2-20

• “Optional Inports” on page 2-20

• “Signal Attributes and Block Sample Time” on page 2-24

2-17

Multiple MPC Controllers

Parameters

MPC Object List
The table is an ordered list of MPC objects. The first row
designates the controller to be used when the switch input equals
a certain number. The first designates which controller is used
when the switch input equals 1, the second when the switch input
equals 2, and so on. These controllers must refer to objects that
already exist in your base workspace.

Note After entering each MPC object name, press Enter. Also
press Enter after editing an object name.

Use Add and Delete to add and remove rows. When deleting,
indicate any rows to delete using the Delete It check box.

When the edit box is empty, and the block is connected to the
plant, clicking the Design button constructs a default MPC
controller. This controller is constructed using a linearized plant
model from the Simulink diagram. This action also opens the
design tool so you can modify the default behavior.

You can also start the design tool by selecting one or more MPC
objects using the Design It check box and then clicking Design.
All selected MPC objects are loaded into the design tool where you
can review and edit their properties.

Initial controller state
Initial state of each MPC object in the ordered list. Each must be
a valid mpcstate object. If no value is supplied, the default is
the nominal value defined in the Model.Nominal property of the
mpc object.

2-18

Multiple MPC Controllers

Required Inports

Controller Selection
The switch input signal must be a scalar integer between 1 and
nc, where nc is the number of controllers listed in your block mask.
At each control instant, this signal designates the controller that
will be used.

Measured output
At each control instant, the mo signal must contain the current
output variable measurements. Let nym be the number of
measured output variables (MO) defined in your predictive
controller. If nym=1, connect a scalar signal to the mo inport.
Otherwise, connect a row or column vector signal containing nym
real, double-precision elements.

Reference
At each control instant, the ref signal must contain the current
reference values (targets or setpoints) for the ny output variables
(ny = nym+ number of unmeasured outputs). You have the
option to specify future reference values (previewing).

The ref signal must be size N by ny, where N N p()1 is the
number of time steps for which you are specifying reference values
and p is the prediction horizon. Each element must be a real,
double-precision number. The ref dimension must not change
from one control instant to the next.

When N=1, you cannot preview. To specify future reference

values, choose N such that 1 N p to enable previewing. Doing
so usually improves performance via feedforward information.
The first row specifies the ny references for the first step in the
prediction horizon (at the next control interval k=1), and so on for
N steps. If N<p, the last row designates constant reference values
to be used for the remaining p-N steps.

2-19

Multiple MPC Controllers

For example, suppose ny=2 and p=6. At a given control instant,
the signal connected to the controller’s ref inport is

[2 5 k=1
2 6 k=2
2 7 k=3
2 8] k=4

The signal informs the controller that:

• Reference values for the first prediction horizon step (k=1)
are 2 and 5.

• The first reference value remains at 2, but the second increases
gradually.

• The second reference value becomes 8 at the beginning of the
fourth step (k=4) in the prediction horizon.

• Both values remain constant at 2 and 8 respectively for steps
5–6 of the prediction horizon.

Required Outports
Manipulated Variables

The mv outport provides a signal defining the nu 1 manipulated
variables, which are to be implemented in the plant. The controller
updates its mv outport by solving a quadratic program at each control
instant. The elements are real, double-precision values.

Optional Inports
Measured disturbance
Add an inport (md) to which you can connect a measured disturbance
signal.

Your measured disturbance signal (MD) must be size Nxnmd, where

nmd() 1 is the number of measured disturbances defined in your

Model Predictive Controller and N (1 N p+1) is the number of
time steps for which the MD is known. Each element must be a real,

2-20

Multiple MPC Controllers

double-precision number. The signal dimensions must not change from
one control instant to the next.

If N=1 you cannot preview. At each control instant, the MD signal must
contain the most recent measurements at the current time k=0 (as a row
vector, length nmd). The controller assumes that the MDs remain constant
at their current values for the entire prediction horizon.

If you are able to predict future MD values, choose N such that1<N p+1
to enable previewing. Doing so usually improves performance via
feedforward. In this case, the first row must contain the nmd current
values at k=0, and the remaining rows designate variations over the
next N-1 control instants. If N<p+1, the last row designates constant
MD values to be used for the remaining p+1-N steps of the prediction
horizon.

For example suppose nmd=2 and p=6. At a given control instant, the
signal connected to the controller’s md inport is:

[2 5 k=0
2 6 k=1
2 7 k=2
2 8] k=3

This signal informs the controller that:

• The current MDs are 2 and 5 at k=0.

• The first MD remains at 2, but the second increases gradually.

• The second MD becomes 8 at the beginning of the step 3 (k=3) in the
prediction horizon.

• Both values remain constant at 2 and 8 respectively for steps 4–6
of the prediction horizon.

mpcpreview shows how to use MD previewing in a specific case.

For calculation details, see “Prediction Model” and “QP Matrices”.

2-21

Multiple MPC Controllers

Externally supplied MV signals
Add an inport (ext.mv), which you can connect to the actual
manipulated variables (MV) used in the plant. The block uses these to
update its internal state estimates. For example, suppose the actual
signals saturate at physical limits or the MV is under manual control. In
both cases, feeding the actual value back to the MPC Controller block
can improve performance significantly, because the prediction model’s
state estimates are updated more accurately.

The following example shows how a manual switch may override the
controller’s output. Also see Turning Controller Online and Offline
with Bumpless Transfer.

Do not connect this option to leave the ext.mv inport unconnected. In
either case, the model predictive controller assumes that the plant uses
the MV signals sent by the MPC Controller block. In the preceding
example, the external MV signal always provides the model predictive
controller that the control signal actually used in the plant. Otherwise,
the model predictive controller’s internal state estimate would be
inaccurate.

2-22

Multiple MPC Controllers

Note The MPC Controller block is a discrete-time block with sampling
time inherited from the MPC object. The MPC block has direct
feedthrough from measured outputs (mo), output references (ref), and
measured disturbances (md) to MPC-manipulated variables (mv). There
is no direct feedthrough from externally supplied manipulated variables
(ext.mv) to MPC-manipulated variables (mv).

Input and output limits
Add inports (umin,umax,ymin,ymax), which you can connect to run-time
constraint signals. If this check box is not selected, the block uses
the constant constraint values stored within its mpc object. Example
connections appear in the following model. See Varying Input and
Output Constraints for an example of using this option.

Each unconnected limit inport, such as ymin in the following model, is
treated as an unbounded signal. The corresponding constraint settings
in the mpc object must also be unbounded. For connected limit inports,
such as ymax, the signals must be finite and the corresponding variables
in the mpc object must also be bounded.

All constraint signals connected to the block must be finite. Also, you
cannot change the number or identity of constrained and unconstrained
variables. For example, if your mpc object specifies that your first MV
has a lower bound, you must supply a umin signal for it.

2-23

Multiple MPC Controllers

Signal Attributes and Block Sample Time
Output data type
Specify the data type of the manipulated variables (MV) as one of the
following:

• double— Double-precision floating point (default).

• single — Single-precision floating point.

You specify the output data type as single if you are implementing
the model predictive controller on a single-precision target.

For an example of double- and single-precision simulation and code
generation for an MPC controller, see “Simulation and Code Generation
Using Simulink Coder”.

To view the port data types in a model, in the Simulink Editor, select
Display > Signals & PortsPort Data Types. For more information,
see “Display Port Data Types”.

2-24

Multiple MPC Controllers

Block uses inherited sample time (-1)
Use the sample time inherited from the parent subsystem as the
Multiple MPC Controllers block’s sample time.

Inheriting the sample time allows you to conditionally execute the
Multiple MPC Controllers block inside the Function-Call Subsystem
or Triggered Subsystem blocks. For an example, see Using MPC
Controller Block Inside Function-Call and Triggered Subsystems.

Note When you place an MPC controller inside a Function-Call
Subsystem or Triggered Subsystem block, you must execute the
subsystem at the controller’s design sample rate. You may see
unexpected results if you use an alternate sample rate.

To view the sample time of a block, in the Simulink model window,
select Display > Sample Time. Select Colors, Annotations, or All.
For more information, see “View Sample Time Information”.

See Also mpc | mpcmove | mpcstate | MPC Controller

Related
Examples

• Scheduling Controllers for a Plant with Multiple Operating Points
• Chemical Reactor with Multiple Operating Points
• “Simulation and Code Generation Using Simulink Coder”
• “Simulation and Structured Text Generation Using PLC Coder”

2-25

../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
../examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html

Multiple MPC Controllers

2-26

3

Object Reference

• “MPC Controller Object” on page 3-2

• “MPC Simulation Options Object” on page 3-14

• “MPC State Object” on page 3-16

3 Object Reference

MPC Controller Object
All the parameters defining the MPC control law (prediction horizon, weights,
constraints, etc.) are stored in an MPC object, whose properties are listed in
the following table (MPC Controller Object on page 3-2).

MPC Controller Object

Property Description

ManipulatedVariables (or MV or
Manipulated or Input)

Input and input-rate upper and
lower bounds, ECR values, names,
units, and input target

OutputVariables (or OV or
Controlled or Output)

Output upper and lower bounds,
ECR values, names, units

DisturbanceVariables (or DV or
Disturbance)

Disturbance names and units

Weights Weights defining the performance
function

Model Plant, input disturbance, and
output noise models, and nominal
conditions.

Ts Controller’s sampling time

Optimizer Parameters for the QP solver

PredictionHorizon Prediction horizon

ControlHorizon Number of free control moves or
vector of blocking moves

History Creation time

Notes Text or comments about the MPC
controller object

UserData Any additional data

3-2

MPC Controller Object

MPC Controller Object (Continued)

Property Description

MPCData (private) Matrices for the QP problem and
other accessorial data

Version (private) Model Predictive Control Toolbox
version number

ManipulatedVariables
ManipulatedVariables (or MV or Manipulated or Input) is an nu-dimensional
array of structures (nu = number of manipulated variables), one per
manipulated variable. Each structure has the fields described in the following
table (Structure ManipulatedVariables on page 3-3), where p denotes the
prediction horizon.

Structure ManipulatedVariables

Field Name Content Default

Min 1 to p dimensional vector of lower
constraints on a manipulated
variable u

-Inf

Max 1 to p dimensional vector of upper
constraints on a manipulated
variable u

Inf

MinECR 1 to p dimensional vector describing
the equal concern for the relaxation
of the lower constraints on u

0

MaxECR 1 to p dimensional vector describing
the equal concern for the relaxation
of the upper constraints on u

0

Target 1 to p dimensional vector of target
values for the input variable u

'nominal'

3-3

3 Object Reference

Structure ManipulatedVariables (Continued)

Field Name Content Default

RateMin 1 to p dimensional vector of
lower constraints on the rate of a
manipulated variable u

-Inf if problem
is unconstrained,
otherwise -10

RateMax 1 to p dimensional vector of
upper constraints on the rate of a
manipulated variable u

Inf

RateMinECR 1 to p dimensional vector describing
the equal concern for the relaxation
of the lower constraints on the rate
of u

0

RateMaxECR 1 to p dimensional vector describing
the equal concern for the relaxation
of the upper constraints on the rate
of u

0

Name Name of input signal. This is
inherited from InputName of the LTI
plant model.

InputName of LTI
plant model

Units String specifying the measurement
units for the manipulated variable

''

Note Rates refer to the difference Δu(k)=u(k)-u(k-1). Constraints and weights
based on derivatives du/dt of continuous-time input signals must be properly
reformulated for the discrete-time difference Δu(k), using the approximation
du/dt Δu(k)/Ts.

OutputVariables
OutputVariables (or OV or Controlled or Output) is an ny-dimensional
array of structures (ny = number of outputs), one per output signal.
Each structure has the fields described in the following table (Structure
OutputVariables on page 3-5), where p denotes the prediction horizon.

3-4

MPC Controller Object

Structure OutputVariables

Field Name Content Default

Min 1 to p dimensional vector of lower
constraints on an output y

-Inf

Max 1 to p dimensional vector of upper
constraints on an output y

Inf

MinECR 1 to p dimensional vector describing
the equal concern for the relaxation of
the lower constraints on an output y

1

MaxECR 1 to p dimensional vector describing
the equal concern for the relaxation of
the upper constraints on an output y

1

Name Name of output signal. This is
inherited from OutputName of the LTI
plant model.

OutputName of LTI
plant model

Units String specifying the measurement
units for the measured output

''

Integrator Magnitude of integrated white
noise on the output channel (0=no
integrator)

[]

In order to reject constant disturbances due for instance to gain nonlinearities,
the default output disturbance model used in Model Predictive Control
Toolbox software is a collection of integrators driven by white noise on
measured outputs (see “Output Disturbance Model”in the Model Predictive
Control Toolbox User’s Guide). Output integrators are added according to
the following rule:

1 Measured outputs are ordered by decreasing output weight (in case
of time-varying weights, the sum of the absolute values over time is
considered for each output channel, and in case of equal output weight, the
order within the output vector is followed).

3-5

3 Object Reference

2 By following such order, an output integrator is added per measured
outputs, unless there is a violation of observability, or you force it by
zeroing the corresponding value in OutputVariables.Integrators).

By default, OutputVariables.Integrators is empty on all outputs.
This enforces the default action of Model Predictive Control Toolbox
software, namely add integrators on measured outputs, do not
add integrators on unmeasured outputs. By setting the entry of
OutputVariables(i).Integrators to zero, no attempt will be made to add
integrated white noise on the i-th output . On the contrary, by setting the
entry of OutputVariables(i).Integrators to one, an attempt will be made
to add integrated white noise on the i-th output (see getoutdist).

DisturbanceVariables
DisturbanceVariables (or DV or Disturbance) is an (nv+nd)-dimensional
array of structures (nv = number of measured input disturbances, nd =
number of unmeasured input disturbances), one per input disturbance.
Each structure has the fields described in the following table (Structure
DisturbanceVariables on page 3-6).

Structure DisturbanceVariables

Field Name Content Default

Name Name of input signal. This is
inherited from InputName of
the LTI plant model.

InputName of LTI plant
model

Units String specifying the
measurement units for the
manipulated variable

''

The order of the disturbance signals within the array DisturbanceVariables
is the following: the first nv entries relate to measured input disturbances, the
last nd entries relate to unmeasured input disturbances.

3-6

MPC Controller Object

Note The Name properties of ManipulatedVariables, OutputVariables,
and DisturbanceVariables are read only. You can set signal names in the
Model.Plant.InputName and Model.Plant.OutputNameproperties of the
MPC object, for instance by using the method setname.

Weights
Weights is the structure defining the QP weighting matrices. Unlike the
InputSpecs and OutputSpecs, which are arrays of structures, weights is a
single structure containing four fields. The values of these fields depend on
whether you are using the standard quadratic cost function (see “Standard
Form”) or the alternative cost function (see “Alternative Cost Function”).

Standard Cost Function
The table below, Weights for the Standard Cost Function (MATLAB®

Structure) on page 3-7, lists the content of the four fields where p denotes the
prediction horizon, nu the number of manipulated variables, ny the number of
output variables.

The fields ManipulatedVariables, ManipulatedVariablesRate,
and OutputVariables are arrays with nu, nu, and ny columns,
respectively. If weights are time invariant, then ManipulatedVariables,
ManipulatedVariablesRate, and OutputVariables are row vectors.
However, for time-varying weights, each field is a matrix with up to p
rows. If the number of rows is less than the prediction horizon, p, the object
constructor duplicates the last row to create a matrix with p rows.

Weights for the Standard Cost Function (MATLAB Structure)

Field Name Content Default

ManipulatedVariables (or MV or
Manipulated or Input)

(1 to p)-by-nu dimensional array
of input weights

zeros(1,nu)

ManipulatedVariablesRate (or
MVRate or ManipulatedRate or
InputRate)

(1 to p)-by-nu dimensional array
of input-rate weights

0.1*ones(1,nu)

3-7

3 Object Reference

Weights for the Standard Cost Function (MATLAB Structure) (Continued)

Field Name Content Default

OutputVariables (or OV or
Controlled or Output)

(1 to p)-by-ny dimensional array
of output weights

1 (The default for output
weights is the following:
if nu≥ny, all outputs
are weighted with unit
weight; if nu<ny, nu
outputs are weighted
with unit weight (with
preference given to
measured outputs), while
the remaining outputs
receive zero weight.)

ECR Weight on the slack variable ε
used for softening the constraints

1e5*(max weight)

The default ECR weight is 105 times the largest weight specified in
ManipulatedVariables, ManipulatedVariablesRate, and OutputVariables.

Note All weights must be greater than or equal to zero. If all weights on
manipulated variable increments are strictly positive, the resulting QP
problem is always strictly convex. If some of those weights are zero, the
Hessian matrix of the QP problem may become only positive semidefinite. In
order to keep the QP problem always strictly convex, if the condition number
of the Hessian matrix KΔU is larger than 10

12, the quantity 10*sqrt(eps) is
added on each diagonal term. This may only occur when all input rates are
not weighted (WΔu=0) (see “Cost Function” in the Model Predictive Control
Toolbox User’s Guide).

Alternative Cost Function
You can specify off-diagonal Q and R weight matrices in the cost function.
To accomplish this, you must define the fields ManipulatedVariables,
ManipulatedVariablesRate, and OutputVariables as cell arrays, each
containing a single positive-semi-definite matrix of the appropriate size.
Specifically, OutputVariables must be a cell array containing the ny-by-ny

3-8

MPC Controller Object

Q matrix, ManipulatedVariables must be a cell array containing the
nu-by-nu Ru matrix, and ManipulatedVariablesRate must be a cell array
containing the nu-by-nu RΔu matrix (see “Alternative Cost Function”) and the
mpcweightsdemo example). You can abbreviate the field names as shown in
Weights for the Standard Cost Function (MATLAB® Structure) on page 3-7.
You can also use diagonal weights (as defined in Weights for the Standard
Cost Function (MATLAB® Structure) on page 3-7) for one or more of these
fields. If you omit a field, the object constructor uses the defaults shown in
Weights for the Standard Cost Function (MATLAB® Structure) on page 3-7.

For example, you can specify off-diagonal weights, as follows

MPCobj.Weights.OutputVariables={Q};
MPCobj.ManipulatedVariables={Ru};
MPCobj.ManipulatedVariablesRate={Rdu};

where Q=Q. Ru=Ru, and Rdu = RΔu are positive semidefinite matrices.

Note You cannot specify off-diagonal time-varying weights.

Model
The property Model specifies plant, input disturbance, and output noise
models, and nominal conditions, according to the model setup described in
“State Estimation”. It is specified through a structure containing the fields
reported in Structure Model Describing the Models Used by MPC on page 3-9.

Structure Model Describing the Models Used by MPC

Field Name Content Default

Plant LTI model or identified
linear model of the
plant

No default

Disturbance LTI model describing
color of input
disturbances

An integrator on each
Unmeasured input channel

3-9

3 Object Reference

Structure Model Describing the Models Used by MPC (Continued)

Field Name Content Default

Noise LTI model describing
color of plant output
measurement noise

Unit white noise on each
measured output = identity
static gain

Nominal Structure containing
the state, input,
and output values
where Model.Plant is
linearized

See Nominal Values at
Operating Point on page
3-11.

Note Direct feedthrough from manipulated variables to any output in
Model.Plant is not allowed. See “Prediction Model” in the Model Predictive
Control Toolbox User’s Guide.

The type of input and output signals is assigned either through the
InputGroup and OutputGroup properties of Model.Plant, or, more
conveniently, through function setmpcsignals, according to the nomenclature
described in Input Groups in Plant Model on page 3-10 and Output Groups
in Plant Model on page 3-11.

Input Groups in Plant Model

Name Value

ManipulatedVariables (or MV or
Manipulated or Input)

Indices of manipulated variables

MeasuredDisturbances (or MD or
Measured)

Indices of measured disturbances

UnmeasuredDisturbances (or UD or
Unmeasured)

Indices of unmeasured disturbances

3-10

MPC Controller Object

Output Groups in Plant Model

Name Value

MeasuredOutputs (or MO or
Measured)

Indices of measured outputs

UnmeasuredOutputs (or UO or
Unmeasured)

Indices of unmeasured outputs

By default, all inputs are manipulated variables, and all outputs are
measured.

Note With this current release, the InputGroup and OutputGroup properties
of LTI objects are defined as structures, rather than cell arrays (see the
Control System Toolbox documentation for more details).

The structure Nominal contains the nominal values for states, inputs, outputs
and state derivatives/differences at the operating point where Model.Plant
was linearized. The fields are reported in Nominal Values at Operating Point
on page 3-11 (see “Offsets” in the Model Predictive Control Toolbox User’s
Guide).

Nominal Values at Operating Point

Field Description Default

X Plant state at operating point 0

U Plant input at operating point, including
manipulated variables, measured and
unmeasured disturbances

0

Y Plant output at operating point 0

DX For continuous-time models, DX is the state
derivative at operating point: DX=f(X,U). For
discrete-time models, DX=x(k+1)-x(k)=f(X,U)-X.

0

3-11

3 Object Reference

Ts
Sampling time of the MPC controller. By default, if Model.Plant is a
discrete-time model, Ts=Model.Plant.ts. For continuous-time plant models,
you must specify a sampling time for the MPC controller.

Optimizer
Parameters for the QP optimization. Optimizer is a structure with the fields
reported in the following table (Optimizer Properties on page 3-12).

Optimizer Properties

Field Description Default

MaxIter Maximum number of iterations
allowed in the QP solver

200

Trace On/off 'off'

Solver QP solver used (only 'ActiveSet') 'ActiveSet'

MinOutputECR Minimum positive value allowed for
OutputMinECR and OutputMaxECR

1e-10

MinOutputECR is a positive scalar used to specify the minimum allowed ECR
for output constraints. If values smaller than MinOutputECR are provided in
the OutputVariables property of the MPC objects a warning message is
issued and the value is raised to MinOutputECR.

PredictionHorizon
PredictionHorizon is an integer value expressing the number p of sampling
steps of prediction.

ControlHorizon
ControlHorizon is either a number of free control moves, or a vector of
blocking moves (see “Optimization Variables” in the Model Predictive Control
Toolbox User’s Guide).

3-12

MPC Controller Object

History
History stores the time the MPC controller was created.

Notes
Notes stores text or comments as a cell array of strings.

UserData
Any additional data stored within the MPC controller object.

MPCData
MPCData is a private property of the MPC object used for storing intermediate
operations, QP matrices, internal flags, etc.

Version
Version is a private property indicating the Model Predictive Control Toolbox
version number.

Construction and Initialization
An MPC object is built in two steps. The first step happens at construction
of the object when the object constructor mpc is invoked, or properties are
changed by a set command. At this first stage, only basic consistency checks
are performed, such as dimensions of signals, weights, constraints, etc. The
second step happens at initialization of the object, namely when the object
is used for the first time by methods such as mpcmove and sim, that require
the full computation of the QP matrices and the estimator gain. At this
second stage, further checks are performed, such as a test of observability of
the overall extended model.

Informative messages are displayed in the command window in both phases,
you can turn them on or off using the mpcverbosity command.

3-13

3 Object Reference

MPC Simulation Options Object
The mpcsimopt object type contains various simulation options for simulating
an MPC controller with the command sim. Its properties are listed in the
following table (MPC Simulation Options Properties on page 3-14).

MPC Simulation Options Properties

Property Description

PlantInitialState Initial state vector of the plant model
generating the data.

ControllerInitialState Initial condition of the MPC controller. This
must be a valid @mpcstate object.

UnmeasuredDisturbance Unmeasured disturbance signal entering
the plant.

InputNoise Noise on manipulated variables.

OutputNoise Noise on measured outputs.

RefLookAhead Preview on reference signal ('on' or 'off').

MDLookAhead Preview on measured disturbance signal
('on' or 'off').

Constraints Use MPC constraints ('on' or 'off').

Model Model used in simulation for generating the
data.

StatusBar Display the wait bar ('on' or 'off').

MVSignal Sequence of manipulated variables (with
offsets) for open-loop simulation (no MPC
action).

OpenLoop Perform open-loop simulation.

The command

SimOptions=mpcsimopt(mpcobj)

3-14

MPC Simulation Options Object

returns an empty @mpcsimopt object. You must use set / get to change
simulation options.

UnmeasuredDisturbance is an array with as many columns as unmeasured
disturbances, InputNoise and MVSignal are arrays with as many columns as
manipulated variables, OutputNoise is an array with as many columns as
measured outputs. The last sample of the array is extended constantly over
the horizon to obtain the correct size.

Note Nonzero values of ControllerInitialState.LastMove are only
meaningful if there are constraints on the increments of the manipulated
variables.

The property Model is useful for simulating the MPC controller under model
mismatch. The LTI object specified in Model can be either a replacement for
Model.Plant, or a structure with fields Plant, Nominal. By default, Model
is equal to MPCobj.Model (no model mismatch). If Model is specified, then
PlantInitialState refers to the initial state of Model.Plant and is defaulted
to Model.Nominal.x.

If Model.Nominal is empty, Model.Nominal.U and Model.Nominal.Y are
inherited from MPCobj.Model.Nominal. Model.Nominal.X/DX is only
inherited if both plants are state-space objects with the same state dimension.

3-15

3 Object Reference

MPC State Object
The mpcstate object type contains the state of an MPC controller. Its
properties are listed in MPC State Object Properties on page 3-16.

MPC State Object Properties

Property Description

Plant Array of plant states. Values are absolute, i.e., they
include possible state offsets (cf.Model.Nominal.X).

Disturbance Array of states of unmeasured disturbance models. This
contains the states of the input disturbance model and,
appended below, the states of the unmeasured output
disturbances model.

Noise Array of states of measurement noise model.

LastInput Array of previous manipulated variables u(k-1). Values
are absolute, i.e., they include possible input offsets (cf.
Model.Nominal.U).

The command

mpcstate(mpcobj)

returns a zero extended initial state compatible with the MPC object mpcobj,
and with mpcobj.Plant and mpcobj.LastInput initialized at the nominal
values specified in mpcobj.Model.Nominal.

3-16

	toc
	Functions – Alphabetical List
	Block Reference
	Object Reference
	MPC Controller Object
	ManipulatedVariables
	OutputVariables
	DisturbanceVariables
	Weights
	Standard Cost Function
	Alternative Cost Function

	Model
	Ts
	Optimizer
	PredictionHorizon
	ControlHorizon
	History
	Notes
	UserData
	MPCData
	Version
	Construction and Initialization

	MPC Simulation Options Object
	MPC State Object

	tables
	MPC Controller Object
	Structure ManipulatedVariables
	Structure OutputVariables
	Structure DisturbanceVariables
	Weights for the Standard Cost Function (MATLAB Structure)
	Structure Model Describing the Models Used by MPC
	Input Groups in Plant Model
	Output Groups in Plant Model
	Nominal Values at Operating Point
	Optimizer Properties
	MPC Simulation Options Properties
	MPC State Object Properties
	MPC Controller Object
	Structure ManipulatedVariables
	Structure OutputVariables
	Structure DisturbanceVariables
	Weights for the Standard Cost Function (MATLAB Structure)
	Structure Model Describing the Models Used by MPC
	Input Groups in Plant Model
	Output Groups in Plant Model
	Nominal Values at Operating Point
	Optimizer Properties
	MPC Simulation Options Properties
	MPC State Object Properties

